But is it UNIX?7®+
or why I hate OpenOffice

Greg Lehey
LEMIS (SA) Pty Ltd
grog@lemis.com

3 September 2003

Introduction

UNIX has been around for over a third of a century, well more than half the
history of electronic computing. During that time the man/machine relationship
has changed markedly. Newer, “user-friendly” systems have appeared. Many
people believe that they are the way of the future, that UNIX is antiquated and
hard to use, and that the UNIX user interface should be “fixed”.

There is currently a trend to introduce Microsoft-like desktop software to UNIX.
How does this concept blend with the UNIX philosophy? How well does it
advantage of the system services? How easy is it to use?

This paper looks at the following aspects of “desktop” software and traditional
UNIX software:

e Communicating with computers: use of keyboard, mouse and menus.

The UNIX way of doing things.
e Tools used for communicating with computers.

Menus.

e Icons.
e File formats.

e Solving the problem.

*UNIX is a trade mark of the Open Group. The UNIX copyrights belong to Novell Inc.
The UNIX marketing rights belong to SCO. The UNIX heritage belongs to the community.
All statements believed correct at the time of going to press.

Most examples will come from the area in which I have the most experience,
document preparation.

For the sake of convenience, this paper refers to this “desktop” software as
desktop GUI. The term applies to products from Microsoft and Apple as well
as free software like OpenOffice.

Communicating

Conceptually, the user interface is a form of communication: to control a com-
puter, you must communicate with it. Communications between humans and
computers are modeled on various forms of communications between humans
and humans. It’s instructive to look at the evolution of communication between
humans. In this paper I refer to least the following four levels of communication:

1. The most primitive form of communications, which predate language, are
gestures and grimaces, which can include physical violence. It’s true that
people use these methods with computers as well, though few of them
have any positive outcome. Some have been adapted, however: “point
and click”. This level has the advantage of being easy to learn.

2. The real breakthrough is speech, of course. Many consider the gift of
speech to be the prime distinction between humans and animals. Speech
didn’t happen all at once, of course; initially it would almost certainly
have been limited to a few concepts used to express concrete objects.
In many ways, this is the language used by more primitive command
line interfaces. The word command limits the scope of the language, of
course: the communication we’re talking about here is the human telling
the computer what to do. In this situation, primitive humans might say
“give food” or “build shelter”: a verb (imperative) and a noun. Primitive
computer command lines look similar: edit document or remove file.

3. Languages evolve. Human languages developed other parts of speech,
notably adjectives and adverbs. That may seem like a small difference,
but it’s important. The previous level, consisting of verbs and nouns, was
more accurate and less difficult than sign language, but it didn’t really
do much that couldn’t be done with sign language. With adverbs and
adjectives people were able to leave sign language behind and express
nuances that sign language couldn’t.

Computer command languages have corresponding nuances as well. They’re
usually called options. You might compare the UNIX command Is with a
command “show”. Similarly, Is -l might correspond to “show in detail”.

4. So far, language has only been used for simple operations. What about
expressing more abstract concepts? Imagine a primitive human telling
somebody what to expect in the forest: “If you see an elephant, climb up
a big tree and hide”. Or maybe he’s standing in front of a large pile of
debris which has blown in front of his cave. He wants to give instructions:

“Take a little bit of this mess and throw it over the cliff, then come back
and repeat until they’re all gone”. Both these activities are conditional,
and the second is repetitive. In computer terms, they’re programs.

None of these comparisons are new. All four levels of communication have been
known for decades. Paradoxically, the most primitive level was one of the last
to appear: initially the hardware requirements were too great.

The UNIX way

UNIX was successful for a number of reasons, but very little of it was original.
One of the main reasons for its success were the close integration of a relatively
small number of concepts which, when used together, proved to be a power-
ful environment in which to build solutions which were frequently elegant and
efficient. To quote the committee which awarded Thompson and Ritchie the
Turing award in 1983,

The success of the UNIX system stems from its tasteful selection of
a few key ideas and their elegant implementation. The model of the
UNIX system has led a generation of software designers to new ways
of thinking about programming. The genius of the UNIX system is
its framework, which enables programmers to stand on the work of
others.

Elsewhere,! the UNIX philosophy has been defined as:

e Write programs that do one thing and do it well.
e Write programs that work together.

o Write programs that handle text streams, because that is the universal
interface.

The use of a few, simple file formats encouraged interchange of data between
individual applications. In this respect it resembles a super-language for com-
munication with the computer.

These goals are conceptually not closely related to the goal of “get the job done”.
UNIX appeared at a time when most users were either computer experts or had
access to a computer expert when they ran into trouble. That changed greatly
with the introduction of “personal” computers, which might be used by a single
inexperienced person without access to help. Beginners had trouble both with
the concepts and with operating the machines. More importantly, though, they
weren’t interested in doing things the right way. They just wanted to get them

I This statement is widespread, but it’s not clear where it originated.

done. A large majority of users could not type effectively, so the keyboard was
a problem. Many systems, UNIX included, had a large number of commands
with often arcane names and usages. Users had difficulty remembering how to
do things.

One reaction of the industry was to introduce “easy to use” software to make life
easier for beginners. Some of the central concepts in this approach were menus
and mice: the computer gave the user a selection of what he might want to use,
and he could select it with the mouse. If the UNIX approach is a super-language,
this approach looks more like sign language, level 1 of communication.

Other UNIX features

In addition to the “UNIX philosophy”, there are other important concepts about
UNIX:

e UNIX is a multi-user system. Initially, “desktop” systems were intended
for use by only one person at a time. While most UNIX desktops are
also used by only one person at a time, the underlying implementation
provides a number of standardized concepts which most software in the
Microsoft space implement individually.

e UNIX has a standardized, highly structured file system layout. Although
“desktop” software such as Microsoft also has such a structure, it is not
used or enforced to anything like the same extent. In particular, each user
has a “home directory” where most of his files reside.

The personal computer approach has been refined over the last twenty years to a
point where all such software has relatively similar “look and feel”. It currently
emphasizes a large number of selection buttons and much use of the mouse,
even in cases where the keyboard would be a better choice. It frequently uses
complicated file formats. Even in the case of standardized formats, data inter-
changeability is limited by the complexity of the format. The complexity of the
software frequently gives rise to substandard reliability, security and efficiency.

The tools of communication

In the course of computer history, a number of different methods have been used
for humans to communicate with computers:

e Initially, access was non-interactive, for example punched cards or paper
tape.

e Round the time UNIX was introduced, it became practicable to use tele-
types for interactive access to machines, and UNIX made great use of it.
The output was on paper, so interaction tended to be linear.

e Not long afterwards, the first CRT-based terminals became available.
They were character based serial devices which could seldom transfer more
than 2 kB/s. They were often given the name glass tty, and much soft-
ware treated them in exactly the same way as a teletype. Nevertheless,
some “full-screen” software used this interface to create menus. The user
generally navigated the menu with the cursor keys.

e In the 1980s, bit-mapped graphics became generally available. Such sys-
tems were usually equipped with a mouse. Initially available systems were
proprietary, but in the late 1980s the X Window System became more gen-
erally available.

The advent of the X window system was too late to have any significant in-
fluence on the “desktop” market, which had developed in some isolation from
UNIX, despite the fact that Microsoft marketed UNIX (under the trade name
XENIX) in the 1980s. Microsoft’s initial software development paralleled that
of UNIX, with the exception that by the time of the introduction of the IBM
PC, (primitive) bit-mapped graphics were available. Microsoft started using the
bit-mapped interface in the mid- to late 1980s.

At this point, there was little difference in the way Microsoft and UNIX ap-
proached the issue of interactive I/O. The most notable difference was that
UNIX had a powerful command language, the shell. In terms of the hierarchy
described above, it matched the fourth level, with programming concepts. Mi-
crosoft had a command language which embraced similar concepts, but it was
far less powerful and matched the third level.

Menus

By the early 1990s, all systems, including UNIX, made significant use of menus.
No text menu based applications made their way into UNIX, but the X Window
system made significant use of them, though not to the same extent as the desk-
top GUI approach, where they are central to the user interface. For example,
the basic access to directories and files is via a menu. This imposes significant
limitations on the size of directories: it is impractical to have menus with more
than 100 entries, and even this many entries make things complicated. Although
UNIX also has some problems with large directories, the typical UNIX directory
is not constrained by the graphical representation and can be much larger. In
some cases, this is necessary: some applications naturally map a specific entity
to a file or directory. Email is a good example: a common way to archive Email
is in files which match the name of the sender. I have something over 8,000
folders (mail files) in my Maail directory.

For some reason, Microsoft has phased out the word directory in favour
of the word folder. This is confusing and unnecessary: in Microsoft as
elsewhere, the term folder is used for a collection of mail messages, which
may be stored in individual files in their own directory, in a single file, or

in a database. Unfortunately, some free desktop GUI software is following
this example.

With Microsoft’s Outlook, looking for a folder in such a directory can look like
this:

& \\ECHUNGA\grog\Mail wantadilla

| Ele | Edt View Go Favores Help E
E:avru:m'['g 5;% a|a‘&é§u‘£' -
VAgEess [) \|ECHUNGA\grogMail wantadila] &
m?'u:, W bews e e W 6D G el s mea m o (NS
A & H A A A A A A A s & A g J
L o8 2288288 2e248%398
O I |
I I I R
- s s B S S 800880
H & #H A B & A # & & # & & 9
Juoucte| boulet boutin bouyer bawen boyee bo [bpechter bpega bptnm bats b bin =
Bsn] [N 8 G ¥ woomeusr [[SNECHUNGAo. Huntted-Pa | RS TRSE TE

This is one page of nearly 100. Clearly it’s very difficult to search this list by
paging through it or scrolling with the scroll bar. In many ways this applies to
the corresponding UNIX list (from the mutt MUA):

= grog (ttypS) wantadilla:Mail B

== Mutt: Directory [“/Maill, File mask: 1".[".]
. A i

944 lemis 1829 Jun 256 2001 bjm
945 lemiz 4763 Mar 21 11:24 bjml287
946 lemis 11118 Jan 19 15:37 bjohnsdd
947 lemis 10698 Jan 06 1992 bjorn
948 lemis 1430 Jul 18 2001 bjorn,wharff
949 lemiz 24121 Mov 2§ 2001 bjpertds
960 lemis 5231 Sep 11 1997 bjue
951 lemiz 576362 Dec 24 10333 bkarnikowski
952 lemis 740329 Fug 05 19595 bkat
953 lemis 1373 Mov 05 1997 bkicB4wud
954 lemiz 14964 Aug 28 2000 Bkogsws
955 lemis 2882 Apr 30 13:13 bkpark
956 lemiz 13BEE May 19 2000 bkramer
967 lemis 5073 Jun 09 1995 bktjia
958 lemis 7788 Mow 22 1996 black
959 lemiz 4730 Mar 21 1996 black_mammoth
960 lemis 3631 Sep 01 11:30 blackend
961 lemiz 1323 Aug 14 1996 blackened
962 lemis 20785 Dec 23 1998 blacklist
963 lemis 5974 Jan 30 1999 blackshr
964 P ——— | grog lemis Z0TEE Fug 18 2000 blake
qiExit ciChdir miMask 7:iHelp

The difference in the way the files are displayed is not important: you can
display Microsoft folders in textual form as well. The problem is finding the
correct needle in your haystack. The traditional desktop GUI approach has

been to scroll the scroll bar and then click on the appropriate field, all with
the mouse. This is not easy: the scroll bar has become very small, and it’s
difficult to select it. Once you have, a small movement can scroll more than
a page. Even when you master this problem, maybe by using the PgUp and
PgDn keys, you need to recognize the correct file name. It’s surprisingly easy to
miss it, especially with the icon layout. It’s a lot easier to use the keyboard. A
technique used in UNIX is the incremental search: the user types in the initial
characters of the text being searched, and the cursor is positioned on the first
text which matches. After typing, say, jd, the display becomes:

grog (ttypS) wantadilla:Mail [

grog lemis E824 Jan 15 2001 jda
qrog lemiz BBEEE Jun 24 0B:20 jdarnold
grog lemiz 97422 Mar 29 2000 jdawis
arog lemis 36281 Sep 25 1997 jdc
grog lemiz 16845 Jan 17 1998 jddst19+
qirog lemiz 22132 Jun 09 2001 jdeare
grog lemiz 4205 Dec 18 1998 jdiaz
qrog lemiz 1459 Jul 14 1998 jdigney
grog lemiz 1379 fpr 18 2001 jdinel
arog lemiz 2635 May 12 1996 jdl
grog lemis 4207 Jan 28 2001 jdls
qrog lemiz 77529 Jul OF 2001 jdn
grog lemiz 2896 Apr 0B 19:35 jdolecek
arog lemiz 3792298 Jul 15 1997 jdoneham
grog lemiz 251415 Feb 08 10:46 jdp
arog lemiz 2916 Mar 31 1992 jd=
grog lemiz 1298 Oct 13 1996 jdt
grog lemis 18379 Jul 05 14321 jdub
grog lemis 8874362 Jul 06 11:4E jdunham
qrog lemiz Z600 Feb 100 1999 jdunn

q:Exit c:Chdir m:Mask 7:Help

This method is much easier than the “user friendly” desktop GUI method,
and some desktop GUI software, including Microsoft Outlook, has adopted it,
although its use is not widely known: apparently it differs too much from the
traditional approach.

Menu trees

An alternative solution to the size of menus is to arrange them in a hierarchy.
This works well for programs. For example, on my laptop I have the following
number of executables:

Directory Number of executables
/bin 40
Jusr/bin 406
/sbin 104
Jusr/sbin 229
Jusr/local /bin 630
Jusr/local/sbin 35
Jusr/X11R6/bin 353
Total 1797

It’s almost impossible to remember the names and purposes 1800 different pro-
grams, and many are of only limited utility. A menu system which can present
the most useful ones in a clear and understandable way can be a great advan-
tage. The question is how to present them. It’s clearly impractical to display a
single menu with 1,800 entries: it’s more difficult to navigate than remembering
the names. There are two possible solutions:

e Present submenus with related programs.

e Ignore most of the programs, notably the more specialized ones.

Current Microsoft implementations use both of these techniques. The normal
method of starting a program selects at least one and possibly multiple nested
submenus. Even so, a number of programs cannot be found via the menus, and
others are placed in non-intuitive locations in the menu tree. These programs
can be started from a special one-line window, selected with a mouse click, into
which the user types the name of the program.

For some people, this is a useful compromise. It makes life easier for people
who can’t type well, and who use only a small subset of what the system has to
offer. The disadvantages still exist, but many perceive them to be a reasonable
price to pay for the convenience of finding a program easily and not having to
type much.

For other people, particularly experienced computer users, this approach is
painful. Instead of simply typing in the name of a program, you need to:

1. Find the mouse.

2. Select the “start” icon, often at bottom left of the screen.
Select a submenu from the menu.

Possibly repeat, selecting a further submenu from the submenu.

Select the final program.

A

If the program requires arguments, supply them by whatever means the
program provides.

This last point shows a further problem with the approach: if it’s difficult to list
all programs in a menu, it’s clearly impossible to include every possible option
for every program. The result? Programs are written not to require options.
This is a workaround, not a solution.

The alternative way to present options is, of course, a menu or menu tree. For
example, to tell OpenOffice to scan a document, you go through the following
tree:

Insert Format JTools Window Help

Manual Break... 8 {@ FT +8e &
Fields 4 ;
98 Special Character | === m W= A AM

Sectien... ' - ' g ¢ 3 ' L
_ Hyperlink
Header b
Footer b
Footnote,
42 Bookmark...
G- Cross-reference...
8 Note. ..
Script..
Indexes and Tables b

Ervelope..

01 Frame...
B Table.. Control+F12
Harizontal Line
Graphics & From File. .. |
Object Scan y Select Source. .
O Fleating Frame Request. .

B Eile...

The normal way to get to this menu is to select the Insert tab at the top of
the screen, then pass the mouse over the Graphics tab, which causes the first
submenu to appear. Selecting Scan then causes the next menu to appear. With
practice, this does not take more than about two seconds, not much more than
the time it takes a practiced typist to type in a command.

There are better alternatives, though, as indicated by the underlined letters
on the menus: you can invoke the same submenu with the keyboard sequence
A1t-IGS. This is much closer in concept to the command line approach. The
difference is that the character sequence scan is relatively easy to remember;
A1t-IGS is not. In addition, there is no record of the keystrokes which have
been pressed.

What’s wrong with the UNIX way?

UNIX isn’t perfect either: UNIX desktop software is not ready for use by non-
technical people. The problems with UNIX software are sufficient for another
diatribe, but in summary it’s not really “user-friendly”. There’s a steep learning
curve, and a lot of things require deep magic to use at all. There are places
for menus and other desktop GUI features in UNIX software. For example,
finding special characters for use in TEX is difficult. I don’t normally use TEX,
and while preparing this document I spent 20 minutes looking for the character
®. I finally gave up and asked somebody who knew (it’s \textregistered).
In OpenOffice, it’s simple: you Select Insert, then Special Character, and
search the list for the character. All in all, including finding its position (it’s in
the first page, ISO 8859-1), less than a minute.

The difference comes the second time you want to enter the character. In

TEX, you just type \textregistered, which takes about 2 seconds for a good
typist. With OpenOffice, you still need to go through the same process as
before. Now you know where it is, and because it’s on the first page of special
characters, it only takes 10 seconds. If you want to insert characters located on
other pages, it can take a considerably longer time, up to a minute, for every
instance of the character. This is a relatively typical distinction: desktop GUI
applications emphasize easy learnability for the usual case and do not address
more complicated issues adequately: “You can learn it in a day and spend the
rest of your life paying for it”.

Clearly there should be something better than either approach. I take the
position that the UNIX approach is more expandable than the desktop GUI
approach. But concentrating programmer effort desktop GUI applications dis-
tracts from the task of finding a better approach. Such better approaches exist:
the Emacs editor, for example, has the reputation of being very difficult to use,
partially helped by its author’s insistence on mapping the Backspace key to
the help function. Nevertheless, Emacs is as easy to use as any editor: it sup-
plies the same menu functionality as most desktop GUI software, but it doesn’t
require the use of the menus:

—+

= papertex T205]
File Edit Options Buffers Tools|TeX Help
[Search Files (Grepl...
Cexad ¢
| A Compile... (L)
T-Elicatmn programs don' Shell Commard, ., (H1 here, and on
what kind of machine. to Shell Command on Resior... (M-1] [fision that
doesn't affect the constr (D). (D)
11 Checki r ~Check.
“sectioe{ But it can' Bl .l | spelt BFFer
Compare (Ediff] ~ Spell-Check Message
A number of paople reco Herge - ~Check
softuare, but they defe Fpeil Pegdon
Microsoft, and then the Hpply Patch « Spell-Check Comments
wery reasonable, EdiFF Miscellanea - Spell-Check Word (H-5]
The prablem with thiz a Wersion Control - Corniraw Spall-Dract deg
advantages shown sbove. pe)-pys - Complete Word Fragment
non-technical psople, ===———
another diatribe, but i Read Net Mews (Grus) Complete Uord
stesp learning curve. 2 Read Mail (with RHAIL) Help
ere are places for me
Far example, Finding sp Send Mail {with sendmail) {C-x m) Save Dictionary
20 minutes looking for ‘Direckary Search - FEill Process
aszked somebody who knew o h Dicti
Openlfficer, it's sinp] Display Speedbar ik e
Character}, and search Display Calendsr Select Default Dict
finding its position (i = _ Select fmerican Dict
The difference comes{the second Eime You want f? enter the che: select British Dict
STeX, you just type {\tt ‘werb'\' » which takes Sglgct ish Dict
for a aood tupist, With {vem OpenOfficel, wou still need to ¢ Eng]
same process as before, Mow you know where it is, so it only Delect Francais Dict
(because it's on the first page of special characters), [If you want to insert
other characters, it can take a conziderable time, up to a minute, to find the
characters. This 15 a relatively tupical distinction? desktop GUI

applications emphazize easy lpsroeelibs for the usual case and do not address
wore complicated issues adequately: * You can learn it in a day and spend the

%'{__'”'." . L:10PH 0,01 Hail (LaTeX RCS:1.3 Fly Fill)-—L665-—C45--91% |

Where key bindings exist for the functions, the key presses are listed on the
menu, in the same manner as with OpenOffice. The notation M-C means the
Meta (Alt) key with the letter C. The difference from OpenOffice is that all
functions can be bound to keys.

Emacs is by no means perfect. It does a lot of things that desktop GUI appli-
cations do, but there aren’t enough people working on it: the “fun” stuff is the
desktop GUIL As a result, Emacs has some loose edges.

10

A Dbigger problem is that most desktop GUI users don’t understand the power
of an editor. They’re happy with the level of text manipulation that OpenOffice
and Microsoft’s “Word” provide, or at least they don’t go to any trouble to find
something better.

The lack of editing capability hits you everywhere, but the most impressive
example is Email. There’s a strong correlation between the appearance of a
mail message and the software with which it was written. Messages written
with a desktop GUI are typically written in a single block at the top of the
message, with any prior correspondence tacked on the end, frequently with
extreme mutilation of the text:

Msgs:l Postiddl

Foo

/1 Hailer Foo
Date: Tue, 08 Jul 2003 20:07:21 —0400
From: Hailer Foo <gzamltrini0.orgr
.::.'f"l.‘lll 1,00 7
Subject: Re: Mozilla 1.4/Tpera 6,12 & Mime Tupes

1 didn't check in the preferences as yet, and I don't have flash
installed,

I thirk that 1 did hewve flash installed once when 1 put thiz php
code

together, so that may explain it,

1 have zince set the mime types in Mozilla and Opera (haven't tested
Opera as et but it should work),

but its fine now,

1 was a bit worried over how things got broke, but in the end.
the code

or browsers didn't break,

Thankz for the tip,,.

Mailer Foo wrote:

Hin Tue, 08 Jul 2003 18:37:56 —0400, Fuwy Bloke <blokabecmsgle.org
wrotes

>
>»In particular, application/octet-—stream amd
applicat ion’x-zshockwave—

> lash

> haw a php script that uploads files, checking for

rallowing flash files,
tExit =-:PrevPy <Spacer:MextPy viWiew PFttachm, d:Del riReply jiMext ":Help

In this example, written with Mozilla/5.0, the lengths of the lines are uneven,
the text of the original messages is attached below the text, and the quote levels
vary from one line to the next. It also contains a lot of irrelevant text not shown
in this view of the message. All this is the result of inadequate mail software
and the lack of an editor. It’s reasonable to assume that the originator of this
message didn’t intend it to look this bad, but that it was too difficult to change.

Icons

Most desktop GUIs use some form of icon, a small image that represents a
certain function that can be performed by selecting it with the mouse, or some-
times with the keyboard. They also correspond to a more primitive method
of writing than current western alphabets (pictograms instead of hieroglyphs).

11

They’re very useful for small children and other people who can’t read, but they
have a number of significant disadvantages:

e They need to be learnt before they can be understood. The following icons

come from OpenOffice, a number of them unique to OpenOffice:

O | fnE S5+ ik a

It’s possible to learn what they mean by passing the cursor over the icon,
whereupon a possibly descriptive text appears. In time you can learn
what they mean, but you need to learn it: if the descriptive text were
present, there would be nothing left to learn, except possibly how to read.
I maintain that it’s better to learn a generalized skill such as reading rather
than the specialized skill of learning icons for a particular application.

They don’t scale according to the size of the display. They have the
same size in pixels on a 640x480 display (where they take up too much
of the surface area) as they do on a 2048x1536 screen (where they are
unrecognizable).

e Using them requires taking your hands off the keyboard.

e They’re difficult to position on, especially on a high resolution display.

File formats

UNIX file formats are nearly all in plain text; this greatly helps interoperability.
The text of this paper was originally written for the groff formatter. Part of the
source text looked like this:

Elsewhere, the UNIX philosophy has been defined as:

.Ls
LI

B

Write programs that do one thing and do it well.

LI

Write programs that work together

LI

Write programs that handle text streams, because that is the
universal interface.

.Le

The proceedings of the AUUG conference are formatted from IXTEX sources, so
I changed the format accordingly. The same passage now looks like this:

Elsewhere, the UNIX philosophy has been defined as:

\begin{itemize}

12

\item
Write programs that do one thing and do it well.
\item
Write programs that work together
\item
Write programs that handle text streams, because that is the
universal interface.
\end{itemize}

This conversion can be made with a text editor. It is greatly assisted by having
a programmable editor such as GNU Emacs. Both formats have the great
advantage that other utilities, such as grep, diff and we, can handle them directly.
For example, the second line of text above was missing a full stop. After fixing
it, diff shows:

--- paper.tex 2003/07/08 03:39:38 1.3
+++ paper.tex 2003/07/08 03:39:45
©@ -130,7 +130,7 @@
\item
Write programs that do one thing and do it well.
\item
- Write programs that work together
+ Write programs that work together.
\item
Write programs that handle text streams, because that is the
universal interface.

This makes the changes immediately visible. There appears to be no way to
perform a corresponding function with desktop GUI text processors.

The proponents of OpenOffice point out that OpenOffice also uses an “open
format”, XML. That is correct, but it misses a lot of the richness of the UNIX
environment. In preparing this paper, I also imported this text into OpenOffice.
Here’s what I had to do:

e Highlight the text in an Emacs window and copy it into OpenOffice with
mouse button 2.

e Remove the markup manually: OpenOffice does not have advanced editing
facilities. Even simple functions like “delete to end of line” appear to be
missing. This task was further complicated by the extreme proportional
fonts that OpenOffice uses: the spaces are only about the width of the
characters.

e Search for the tool which adds bullet points. It’s available via the icon
Format-Numbering/Bullets.

e For some reason, the first line came out underlined. Select it, then find
the 'L icon to turn off underlining.

13

Press ctrl-S to save the document. A menu appears showing a quarter of
the home directory (not the current working directory), ordered with di-
rectories first. At the bottom is a window for the file name. To save in the
current directory, I have to enter the entire pathname, helped somewhat
by inbuilt file name completion.

The file is saved with a different name: instead of sampletext, it is called
sampletext.szw.

This file is 5045 bytes long. It is in some binary format. file(1) states:

$ file sampletext.sxw
sampletext.sxw: Zip archive data, at least v2.0 to extract

zip -1 tells us:

$ zip -1 sampletext.sxw
Archive: sampletext.sxw
Length Date Time Name

5582 07-08-03 04:10 content.xml
5147 07-08-03 04:10 styles.xml
1119 07-08-03 04:10 meta.xml
6183 07-08-03 04:10 settings.xml
752 07-08-03 04:10 META-INF/manifest.xml

18783 5 files

It’s a reasonable expectation that the text is in content.zml. It consists
of exactly two lines, the second unterminated and 5610 characters long.
Clearly diff is not going to be of much use with it. Most of it is XML
markup. The Emacs fill-paragraph macro makes it marginally legible:
there are 118 lines, of which the original text is:

<text:p>text:style-name="P1">Elsewhere, the UNIX philosophy
has been defined as:</text:p><text:p
text:style-name="P2"/><text:unordered-list
text:style-name="L1"><text:list-item><text:p
text:style-name="P3"><text:s/>Write programs that do one
thing and do it
well.</text:p></text:list-item><text:list-item><text:p
text:style-name="P3"><text:s/>Write programs that work
together.</text:p></text:list-item><text:list-item><text:p
text:style-name="P3"><text:s/>Write programs that handle
text streams, because that is the universal
interface.</text:p></text:list-item></text:unordered-list>
<text:p text:style-name="Standard"/><text:p
text:style-name="Standard">Add some text here.</text:p>

Clearly this text is not intended to be read by humans.

14

This exercise may seem a little silly. Certainly it would be foolhardy to attempt
to edit this document with the traditional UNIX tools. It’s interesting to look
at these steps for other reasons, though:

e OpenOffice does understand some of the X conventions, though there ap-
pear to be bugs in the implementation. For example, it can’t paste from
a different display.

e OpenOffice is not an editor. If you want an editor, you need to go else-
where.

e OpenOffice does not have a freely exchangeable data format. Thus, after
you’ve gone elsewhere for your editing, you have a data conversion issue.

e OpenOffice does not understand UNIX directories adequately. When sav-
ing a new document, it goes to the home directory, not the current direc-
tory..

e OpenOlffice recognizes its files by the file type, but it adds an “extension”
to the file name when saving. This is confusing for people who are used
to free format file names.

It’s important to distinguish here between bugs and implementation decisions.
It’s quite possible, for example, that the first point is a bug which can be fixed.
The difficulty of data interchange is an implementation decision.

It’s also important to understand here that this is not a particular criticism of
OpenOffice. OpenOlffice provides interesting examples of the problems which
much desktop GUI software shares.

Multi this, multi that

UNIX is a multi-user system: since the very beginning, UNIX has run multiple
processes, and as long back as anybody can remember, it has supported multiple
users. By contrast, Microsoft has only recently taken the possibility of multiple
users into consideration, and most of the support is for serial usage: one person
uses the computer, stops, and allows somebody else to

The Microsoft paradigm grew up independently of networks; by contrast, UNIX
has been involved with networking for more than 20 years. UNIX users routinely
use networks as part of their work environment. The X window system is a
networking protocol which allows physical and even geographical separation
clients and servers. Most Microsoft-related software doesn’t understand this.
Here are a couple of examples of the limitations that this mind set causes:

e It is no longer possible to start multiple instances of most web browsers.
Early browsers could do it, but complained about problems with the web
page cache: they did not lock the cache, so any additional instances did
not use the cache.

15

e More recent browsers, such as mozilla, recognize that an instance is run-
ning and require the user to choose another profile, really a reinvention of
the UNIX user paradigm.

e galeon recognizes if an instance of galeon is already running. If it is,
it simply opens another window on the display where the first instance
is running, ignoring the value of the DISPLAY variable. This makes it
impossible, for example, to have a second browser display on a laptop
instead of on the home machine. It also makes it impossible to display
windows on more than one display of a multi-headed machine.

e OpenOlffice also attaches to a running instance, causing the same problems
as with galeon.

“But it can’t do any harm”

A number of people recognize the problems of the current crop of open source
desktop software, but they defend its use: “It provides people with an alternative
to Microsoft, and then they can learn what real software is about”. This sounds
very reasonable.

The problem with this approach is that this kind of software stifles alterna-
tives. Only a certain amount of manpower is available for writing free software,
and every programmer who writes software to emulate Microsoft is one fewer
programmer available for writing a better alternative.

What needs to change
To fix the problems with desktop GUI software,

e The GUI needs to become better attuned to the needs of an experienced
typist.

e Desktop GUI software needs to understand more of the UNIX environ-
ment.

e Desktop GUI software needs to interact better with the UNIX environ-
ment.

These problems are in increasing order of difficulty. Steps are already under
way to solve the first problem. Almost no modern desktop GUI software relies
entirely on the mouse for navigating the screen any more. Most offer “keyboard
short cuts”, in other words a variant of what UNIX has been doing all along.
There is hope that this problem will be solved relatively quickly.

16

It should also be possible to teach desktop GUI software more about the UNIX
environment. The problem here is not difficulty, it’s a matter of recognizing the
need. UNIX and Microsoft use some things differently, such as the keyboard
and mouse. KDE has a solution to this problem: the user has the choice of
a number of profiles, some similar to UNIX, others similar to Microsoft, and
others again going the “KDE way”.

The real problem is going to be the third issue: GUI software makes assumptions
which are completely at odds with the UNIX model, for example the manner
in which text is stored and presented. Some attempts have been made with
programs like LyX, but they miss the real point: the file format should not be
hidden. This is the basis on which programs like grep, diff and cvs are built:
the user should be able to recognize the original text and know what it does.

This is not an easy change to sell. A whole generation of computer users have
grown up with desktop GUI software, and most of them are happy with not
knowing the details. They may not be happy with some aspects of what they
have—most computer users complain about their software—but the vast ma-
jority is not prepared to change, let alone to something which looks primitive
and difficult.

There will probably always be computer users who have little understanding of
computers, and life should not be made more difficult for them. The real issue
here is not that the desktop GUI interface exists, but that it is restrictive: it
makes life difficult for more experienced users.

There’s a vicious circle here: the interface won’t change until people want it to
change. People won’t want it to change until they understand how things can
be easier with the alternatives. Currently, all we can do is recognize that there’s
a problem; there’s currently no solution, though it’s clear where it would have
to come from.

17

