
• How SMPng got where it is

• SMPng high level design

• New Tools

• SMPng high mid/low design issues

• SMPng globally visible changes

• Talk about technology I believe FreeBSD ought to
pick up from BSD/OS.

• Hopefully have set expectations, with regard to
performance and amount of work

CP − SMPng Jun 14, 2000

Slide 1



BSD/OS 4.x
Three lock kernel
• klock, main kernel lock, acquired before processing

Syscall
Trap
Interrupt

• Scheduling lock
Protects run queues
Allows a context switch without holding klock

• ipending lock
Allows ipending to be set without holding klock
Interrupts sometimes get delivered to "wrong"
processor

• Performance is in general good
Equivalent to 3.x on uniprocessor
Almost perfect on a cpu saturated system using
less than 1 processor worth of system cpu time

CP − SMPng Jun 14, 2000

Slide 2



SMPng history

• * Rip out existing SMP code

• Install unsafe code mutex, Giant

• * Update interface to sleep/tsleep.

• Install scheduling mutex sched_lock.
Kernel runs from here on

• * Install updated interrupt code

• * Update scheduling code, AST changed to be per
process.

• Specfs made to understand safe and unsafe drivers

• SCSI subsystem made MP safe

• * Malloc gets its own mutex.

• * All entries into VM system acquire Giant

CP − SMPng Jun 14, 2000

Slide 3



SMPng history

• * Add interposition code to handle safe and unsafe
network device drivers.

• First cut of networking code

• * Witness code implemented.

• Proc layer made MP safe.

• Made buffer cache MP safe.

• UFS read/write path pulled out from under Giant.

• Soft dependencies made to work.

• Mfs daemon runs without Giant.

CP − SMPng Jun 14, 2000

Slide 4



SMPng history

• * NFS nightmare starts. Trying to resolve lock
ordering it becomes clear that code that gets the
vnode interlock can not hold Giant.

• * Changes such that no code holds Giant when doing
VOP_(). This means that all, or at least almost all,
file system code must be MP safe.

• NFS client and server run

• Vnode and splice drivers run

• * Stuff vnode and rnode back in side existing power
of 2.

• Pick up latest soft dependency code

• Soft interrupt code made mostly MI, each netisr has
its thread.

CP − SMPng Jun 14, 2000

Slide 5



SMPng To Do

• * VM system needs to be locked up

• ISO 9660 code needs to be tested

• UFS Quotas need locking

• * Tty code needs to be made MP safe, then
Lock up existing serial drivers
Lock up PTY code
PPP
SLIP
Synchronous network devices

• * SIGXCPU is not delivered, SIGPROF is not always
delivered

• Fix remaining users of vop_nolock

CP − SMPng Jun 14, 2000

Slide 6



SMPng To Do

• Frame relay

• APM

• PCMCIA

• *Union file system

• Loop-back files system

• MS_DOS file system

• Test IPFW, IPV6, IPSEC, multicast

CP − SMPng Jun 14, 2000

Slide 7



SMPng design goals

• Simultaneous execution of multiple kernel threads

• Support loosely cohered memory

• Allow for various hardware interrupt control
schemes

• Simple programming model
Reduce/eliminate complex lock interactions

• Reasonable uniprocessor performance

• Good interrupt response

• Respect scheduling priorities

CP − SMPng Jun 14, 2000

Slide 8



SMPng major characteristics

• All data must be protected by a lock
All global data is effectively volatile

• No SPLS

• In general blocking on a lock causes a context
switch

• Both top half and bottom half code are subject to
preemption

• Interrupts are handled by interrupt threads

• Simple lock ordering
If lock "A" held while lock "B" is acquire then
"B" can not be held while "A" is acquired
Further, if lock "C" is ever acquired while
holding lock "B" then "A" can not be acquired
after "C"

CP − SMPng Jun 14, 2000

Slide 9



Tools - Tracing

• low overhead kernel execution tracing mechanism

• conventional stack back trace much less useful

• functionality similar to printf

• format string is not decoded at run time

• circular buffer per cpu

• trace points conditionally present

• run time choice of what gets traced

• examples:
CTR0(KTR_PROC, "wakeupend");
CTR1(KTR_PROC, "remrq proc=%p", (void *)p);
CTR2(KTR_PMAP,

"pmap_enter: wiring change->%x p=%x ",
wired, CURPROC);

CP − SMPng Jun 14, 2000

Slide 10



Tools - Witness

• Lock ordering

• Verification of duplicate instances of a mutex being
acquired

• Verification of mutexs held when sleeping

• Verification that M_SPIN and M_DEF are not mixed

CP − SMPng Jun 14, 2000

Slide 11



Tools - mp_fixme

• A unified way of marking that can be found with
cscope or glimpse.

• Compiler generated error if the marking string is
wrong.

• Descriptive text is closely associated with the
marking string.

CP − SMPng Jun 14, 2000

Slide 12



Tools - Kdebug

• Decoding and displaying system trace buffer

• Display various kernel and hardware variables

• Decode and display certain kernel data structures

• Display and modify 32 bit words or 8 bit bytes in
physical or virtual memory

• Issue inb and outb instructions to I/O devices

• Use hardware breakpoint registers of CPU to
implement four kernel breakpoints or watchpoints.

• Display stack back trace

• Start cross system KGDB

• Reboot the system immediately

CP − SMPng Jun 14, 2000

Slide 13



SMPng synchronization mechanisms

• Mutexs
Context Switching
Spin

• Sleep/Wakeup
Sleep & tsleep have added argument

• Lock manager locks
Build on both mutexs and sleep/wakeup
Provides reader/writer locks

Synchronization mechanisms not present
• Low level reader/writer locks

No priority propagation
Slightly expensive
Implementation understood

• Counting semaphores

CP − SMPng Jun 14, 2000

Slide 14



Mutex design goals

• Uncontested operations should be fast

• Support recursion

• Support priority propagation

• Reasonable debugging

• A function may not know type of mutex

• Don’t preclude mixed mode operation

CP − SMPng Jun 14, 2000

Slide 15



Mutex (non-spin) details

• A mutex is acquire by setting a field to the proc
which wants it

• Low order bits in the owner ship field are used as
flags to prevent the compare and exchange from
succeeding.

• The unowned value may not be zero.
• A linked list of mutexs which are owned by a thread

and contested are kept for priority propagation.
• A linked list of processes blocked on a mutex are

kept to allow a process to be put on the run queue
when the mutex is released.

CP − SMPng Jun 14, 2000

Slide 16



Mutex enter (non-spin) operation

• compare unowned and exchange proc pointer with
field in mtx

• if successful done
• call mtx_enter_hard
• if recursion

set recurse bit
increment recursion count
return

• acquire sched_lock
• try to set contested bit on failure

release sched lock
logically start over
at this point uncontested release can not occur

• put our proc on list of procs blocked on mutex
• propagate priority as needed
• call cpu switch
• logically start over

CP − SMPng Jun 14, 2000

Slide 17



Mutex exit (non-spin) operation

• compare proc pointer and exchange unowned with
field in mtx

• if successful done
• call mtx_exit_hard
• if recursed

decrement recurse count if zero
clear recursed bit

return
• acquire sched_lock
• put blocked process on run queue
• set mutex to unowned
• if new process is higher priority

put self on run queue
call cpu_switch()

• return

CP − SMPng Jun 14, 2000

Slide 18



Mutex Primitives

• mtx_enter(mtx_t *, int flag)

• mtx_try_enter(mtx_t *, int flag)

• mtx_exit(mtx_t *, int flag)

• mtx_init(mtx_t *, char *name, flag)

• mtx_owned(mtx_t *)

• mtx_destroy(mtx_t *)

• mtx_assert(mtx_t *, int what)

CP − SMPng Jun 14, 2000

Slide 19



Flags used with Mutex Primitives

• M_DEF

• M_SPIN

• M_RLIKELY

• M_NORECURSE

• M_NOSPIN

• M_NOSWITCH

• M_FIRST

• M_TOPHALF

CP − SMPng Jun 14, 2000

Slide 20



Hiding mutex primitives

#define MBUF_LOCK() mtx_enter(&mbuf_lock, M_DEF)

• Often gets in the way
What is underling mechanism
Exactly what lock is acquired

• Global changes easier

• Place to insert debugging code

• No always correct answer

CP − SMPng Jun 14, 2000

Slide 21



Giant

• Used to protect data accessed from code which has
not been converted.

• Can drop Giant in any function that can sleep
malloc(M_WAITOK)

• Ordering was/is a problem
malloc/kmem_malloc even with no sleep
sleep/tsleep assumes Giant before passed in
mutex.

• DROP_GIANT() starts with "do {" so storage can be
allocated

• PICKUP_GIANT() ends with "} while (0)"
• PARTIAL_PICKUP_GIANT same as PICKUP_GIANT

without "}while (0)"

CP − SMPng Jun 14, 2000

Slide 22



Idle Proc

• Idle proc for each processor

• Supplies initial context for interrupts

• Watches run queues and calls cpu_switch

• Never on a run queue

• Machine dependent

• Could do useful work

CP − SMPng Jun 14, 2000

Slide 23



Run queues/process priority

• 32 user run queues

• 32 kernel run queues

• Run queue maps to hardware priority

• Priority set on entrance to kernel

• Exhaust kernel queues before returning to user

CP − SMPng Jun 14, 2000

Slide 24



Interrupt Threads

• One for every interrupt source (level)

• ithrd is super set of proc

• Lightness comes from how they are started

• Can not call sleep

• Soft int are virtually identical to hard interrupts

CP − SMPng Jun 14, 2000

Slide 25



Device driver interface

• Typically add mutex to softc

• Flag passed to intr_establish saying driver is MP
safe

• Mutex typically gotten
Interrupt service routine

Safe to release and re-acquire mutex
Timeout functions
Top down entrances:
open/close/strategy/ioctl/start

• Unexpected behavior mtx_exit() followed by
mtx_enter()

• SCSI shares mutex between all layers

• Extra layers can be performance problem

CP − SMPng Jun 14, 2000

Slide 26



Malloc

• Single mutex

• Can’t hold any locks with M_WAITOK

• Can acquire Giant even without M_WAITOK

CP − SMPng Jun 14, 2000

Slide 27



Random

• Debugging
Don’t return to user with mutexs held
Don’t return to user with lock manager locks
held

• mi_switch() does not call cpu_switch()

CP − SMPng Jun 14, 2000

Slide 28



Globally visible changes

Sleep, tsleep

• Optional mutex passed in

• Giant is invisible argument

• Unless a timer is running some mutex must be used

• Typical usage:

mtx_enter(vbuf->b_mtxp, M_DEF)
while (!(vbuf->b_lflags & B_L_DONE))

sleep(vbuf->b_mtxp, vbuf, PRIBIO);
mtx_exit(vbuf->b_mtxp, M_DEF)

• Sets processor priority

• Natural locking order for wakeup() less than
perfect

CP − SMPng Jun 14, 2000

Slide 29



Globally visible changes

Struct Buf
• Flags field split
• New field b_lflags

Contains bits which were protected by splbio
B_L_DONE
B_L_BUSY
B_L_WANTED
B_L_SCANNED

Access controller by buf_lock(struct buf *) and
buf_unlock(struct buf *)

• Buffer must be initialized with buf_initmtx(struct
buf *)

• No destroy function
• buf2mtx(struct buf *) used to get address of mutex

associated with buf

CP − SMPng Jun 14, 2000

Slide 30



Globally visible changes

Struct buf (continued)
• Typical usage:

int
biowait(vbuf)

register struct buf *vbuf;
{

buf_lock(vbuf);
while (!(vbuf->b_lflags & B_L_DONE))

sleep(buf2mtx(vbuf), vbuf, PRIBIO);
buf_unlock(vbuf);
if (buf_tstflags(vbuf, B_ERROR) == 0)

return (0);
return (vbuf->b_error ?

vbuf->b_error : EIO);
}

CP − SMPng Jun 14, 2000

Slide 31



Globally visible changes

timeout / untimeout
• timeout() changed and renamed to _timeout()

• timeout() calls _timeout() with unsafe flag set()

• mp_timeout() calls _timeout() without unsafe flag
set()

• spin_timeout() calls _timeout() with spin held flag
set()

• untimeout() can fail

CP − SMPng Jun 14, 2000

Slide 32



Globally visible changes

vnode
• Different fields in the vnode are protected by

different locks.
VOP_LOCK

This implies vop_nolock() has to totally goes
away

v_interlock, VI_LOCK(), VI_UNLOCK()
vnode free list mtx

• v_flag split into v_iflag and v_vflag
Bits used with v_iflag are VI_
Bits used with v_vflag are VV_

• Many to one mapping of vnodes to v_interlock
mutexs

This implies that only a single interlock can be
held

CP − SMPng Jun 14, 2000

Slide 33



Globally visible changes

proc
• Likely most difficult area
• Many different locks for different fields

no lock, doesn’t change after creation
mutex associated with proc
all proc mutex
proc tree
process group mutex
pid hash table mtx
sched lock
proc lock in attach proc or attaching proc parent
time lock

• Typically only lock one proc at a time
• When multiple order is child then parent
• Re-parenting is biggest problem
• all proc chain protected by reader/writer lock
• overall hierarchy protected by reader/writer lock

CP − SMPng Jun 14, 2000

Slide 34



Net

• Interface queues are leaf locks

• In general locking optimized for interrupt threads
acquire pcb head
acquire pcb
generally drop pcb head
socket send/recv queue

• Have to drop and re-acquire lock from top
drop send/recv queue
acquire pcb head
acquire pcb
generally drop pcb head
acquire send/recv queue

• Net graphs may pose performance problem

CP − SMPng Jun 14, 2000

Slide 35



Net Work Stack (continued)

• Locking buried in IF_ so typical coding just works

• Following get queue lock and leave lock:
IF_QLOCK()
IF_QFULL()
IF_PREPEND()

• Following release lock on completion:
IF_QUNLOCK()
IF_DROP()
IF_ENQUEUE()

CP − SMPng Jun 14, 2000

Slide 36



Net Work Stack (continued)

• Following lock and unlock queue:
IF_DEQUEUE()
IF_PREPEND()

• Following expect queue to be locked:
IF_ENQUEUE_NOUNLOCK()
IF_DEQUEUE_NOLOCK()

• Many/Most uses just work
if (IF_QFULL(ifq))

m_free(m);
IF_DROP(ifq);

} else {
IF_ENQUEUE(ifq, m);

}

CP − SMPng Jun 14, 2000

Slide 37



NFS

• No NFS is major reason for people to not run kernel

• runs with real vop lock

• Share lock between server and client

CP − SMPng Jun 14, 2000

Slide 38



Ktrace
• Broken in existing release

• Lock ordering problems

• Forks process to write data

CP − SMPng Jun 14, 2000

Slide 39



What should FreeBSD pickup?

CP − SMPng Jun 14, 2000

Slide 40


