® How SMPng got where it is

® SMPng high level design

® New Tools

® SMPng high mid/low design issues
® SMPng globally visible changes

® Talk about technology | believe FreeBSD ought to
pick up from BSD/0S.

® Hopefully have set expectations, with regard to
performance and amount of work

CP — SMPng Jun 14, 2000J

Slide 1

4 BSD/0S 4.x)

Three lock kernel
® klock, main kernel lock, acquired before processing
o Syscall
o Trap
O Interrupt
® Scheduling lock
O Protects run queues
O Allows a context switch without holding klock
® ipending lock
O Allows ipending to be set without holding klock
O Interrupts sometimes get delivered to "wrong"
processor
® Performance is in general good
o Equivalent to 3.x on uniprocessor
O Almost perfect on a cpu saturated system using
less than 1 processor worth of system cpu time

\ CP — SMPng Jun 14, 2000J

Slide 2

SMPng history

® * Rip out existing SMP code
® Install unsafe code mutex, Giant
® * Update interface to sleep/tsleep.

® Install scheduling mutex sched lock.
O Kernel runs from here on

® * Install updated interrupt code

® * Update scheduling code, AST changed to be per
process.

® Specfs made to understand safe and unsafe drivers
® SCSI subsystem made MP safe

® * Malloc gets its own mutex.

® * All entries into VM system acquire Giant

CP — SMPng Jun 14, 2000J

Slide 3

/

SMPng history

® * Add interposition code to handle safe and unsafe

network device drivers.
® First cut of networking code
® * Witness code implemented.
® Proc layer made MP safe.
® Made buffer cache MP safe.
® UFS read/write path pulled out from under Giant.
® Soft dependencies made to work.
® Mfs daemon runs without Giant.

~

Jun 14, 2000J

Slide 4

/ SMPng history \

® * NFS nightmare starts. Trying to resolve lock
ordering it becomes clear that code that gets the
vnode interlock can not hold Giant.

® * Changes such that no code holds Giant when doing
VOP_(). This means that all, or at least almost all,
file system code must be MP safe.

® NFS client and server run
® Vnode and splice drivers run

® * Stuff vnode and rnode back in side existing power
of 2.

® Pick up latest soft dependency code

® Soft interrupt code made mostly Ml, each netisr has
its thread.

\ CP — SMPng Jun 14, 2000J

Slide 5

SMPng To Do

® “ VM system needs to be locked up

® IS0 9660 code needs to be tested
® UFS Quotas need locking

® * Tty code needs to be made MP safe, then
O Lock up existing serial drivers
O Lock up PTY code
o PPP

o SLIP
o Synchronous network devices

® * SIGXCPU is not delivered, SIGPROF is not always
delivered

® Fix remaining users of vop nolock

CP — SMPng Jun 14, 2000J

Slide 6

/ SMPng To Do

® Frame relay

e APM

e PCMCIA

® *Union file system

® Loop-back files system

® MS_DOS file system

® Test IPFW, IPV6, IPSEC, multicast

Jun 14, 2000J

Slide 7

SMPng design goals \
® Simultaneous execution of multiple kernel threads
® Support loosely cohered memory

® Allow for various hardware interrupt control
schemes

® Simple programming model
O Reduce/eliminate complex lock interactions

® Reasonable uniprocessor performance
® Good interrupt response
® Respect scheduling priorities

CP — SMPng Jun 14, 2000J

Slide 8

/ SMPng major characteristics \

® All data must be protected by a lock
o All global data is effectively volatile

® No SPLS

® In general blocking on a lock causes a context
switch

® Both top half and bottom half code are subject to
preemption

® Interrupts are handled by interrupt threads

® Simple lock ordering
O If lock "A" held while lock "B" is acquire then
'""B" can not be held while "A" is acquired
O Further, if lock "C" is ever acquired while
holding lock "B" then "A" can not be acquired

\ after "C" J
CP — SMPng Jun 14,2000

Slide 9

_

Tools - Tracing

® low overhead kernel execution tracing mechanism
® conventional stack back trace much less useful

® functionality similar to printf

® format string is not decoded at run time

® circular buffer per cpu

® trace points conditionally present

® run time choice of what gets traced

® examples:
CTRO(KTR_PROC, “"wakeupend");

CTR1(KTR_PROC, "remrq proc=%p", (void *)p);

CTR2(KTR_PMAP,

"pmap_enter: wiring change->%x p=%x ",

~

wired, CURPROC); —//
CP — SMPng Jun 14,2000

Slide 10

Tools - Witness

® Lock ordering

® Verification of duplicate instances of a mutex being
acquired

® Verification of mutexs held when sleeping
® Verification that M_SPIN and M_DEF are not mixed

~

CP — SMPng Jun 14, 2000J

Slide 11

Tools - mp_fixme \
® A unified way of marking that can be found with
cscope or glimpse.

® Compiler generated error if the marking string is
wrong.

® Descriptive text is closely associated with the
marking string.

CP — SMPng Jun 14, 2000J

Slide 12

Tools - Kdebug \

® Decoding and displaying system trace buffer
® Display various kernel and hardware variables
® Decode and display certain kernel data structures

® Display and modify 32 bit words or 8 bit bytes in
physical or virtual memory

® Issue inb and outb instructions to 1/0 devices

® Use hardware breakpoint registers of CPU to
implement four kernel breakpoints or watchpoints.

® Display stack back trace
® Start cross system KGDB
® Reboot the system immediately

CP — SMPng Jun 14, 2000J

Slide 13

/

_

SMPng synchronization mechanisms

® Mutexs
O Context Switching
O Spin
® Sleep/Wakeup
O Sleep & tsleep have added argument
® Lock manager locks
O Build on both mutexs and sleep/wakeup
O Provides reader/writer locks

Synchronization mechanisms not present
® Low level reader/writer locks
O No priority propagation
o Slightly expensive
O Implementation understood
® Counting semaphores

Jun 14, 2000J

Slide 14

/ Mutex design goals

® Uncontested operations should be fast
® Support recursion

® Support priority propagation

® Reasonable debugging

® A function may not know type of mutex
® Don’t preclude mixed mode operation

Jun 14, 2000J

Slide 15

Mutex (non-spin) details \

® A mutex is acquire by setting a field to the proc
which wants it

® Low order bits in the owner ship field are used as
flags to prevent the compare and exchange from
succeeding.

® The unowned value may not be zero.

® A linked list of mutexs which are owned by a thread
and contested are kept for priority propagation.

® A linked list of processes blocked on a mutex are
kept to allow a process to be put on the run queue
when the mutex is released.

CP — SMPng Jun 14, 2000J

Slide 16

/ Mutex enter (non-spin) operation \

® compare unowned and exchange proc pointer with
field in mtx
® if successful done
® call mtx_enter_hard
® if recursion
O set recurse bit
O increment recursion count
O return
® acquire sched lock
® try to set contested bit on failure
O release sched lock
O logically start over
O at this point uncontested release can not occur
® put our proc on list of procs blocked on mutex
® propagate priority as needed
® call cpu switch
\ ® logically start over J
Slide 17

/

Mutex exit (non-spin) operation

® compare proc pointer and exchange unowned with
field in mtx
® if successful done
® call mtx_exit_hard
® if recursed
O decrement recurse count if zero
O clear recursed bit
O return
® acquire sched lock
® put blocked process on run queue
® set mutex to unowned
® if new process is higher priority
O put self on run queue
o call cpu_switch()
® return

~

CP — SMPng Jun 14, 2000J

Slide 18

Mutex Primitives
® mtx_enter(mtx_t *, int flag)
® mtx_try enter(mtx_t *, int flag)
® mtx_exit(mtx_t ¥ int flag)
® mtx_init(mtx_t *, char *name, flag)
® mtx_owned(mtx_t ¥)
® mtx_destroy(mtx t *)
® mtx_assert(mtx_t ~, int what)

Jun 14, 2000J

Slide 19

/ Flags used with Mutex Primitives
oM DEF

® M_SPIN

® M_RLIKELY

® MI_ NORECURSE

® M_NOSPIN

® M_NOSWITCH

® M FIRST

© M _TOPHALF

~

Jun 14, 2000J

Slide 20

/

Hiding mutex primitives

#define MBUF_LOCK() mtx_enter(&mbuf lock, M_DEF)

® Often gets in the way
O What is underling mechanism
o Exactly what lock is acquired

® Global changes easier
® Place to insert debugging code
® No always correct answer

~

CP — SMPng Jun 14, 2000J

Slide 21

/ Giant \

® Used to protect data accessed from code which has
not been converted.

® Can drop Giant in any function that can sleep
o malloc(M_WAITOK)

® Ordering was/is a problem
o malloc/kmem_malloc even with no sleep
o sleep/tsleep assumes Giant before passed in

mutex.

® DROP_GIANT() starts with "do {" so storage can be
allocated

® PICKUP_GIANT() ends with "} while (0)"

® PARTIAL_PICKUP_GIANT same as PICKUP GIANT
without "}while (0)"

\ CP — SMPng Jun 14, 2000J

Slide 22

/ Idle Proc

® Idle proc for each processor

® Supplies initial context for interrupts

® Watches run queues and calls cpu_switch
® Never on a run queue

® Machine dependent

® Could do useful work

Jun 14, 2000J

Slide 23

Run queues/process priority \

® 32 user run queues

® 32 kernel run queues

® Run queue maps to hardware priority

® Priority set on entrance to kernel

® Exhaust kernel queues before returning to user

CP — SMPng Jun 14, 2000J

Slide 24

Interrupt Threads \

® One for every interrupt source (level)

® jthrd is super set of proc

® Lightness comes from how they are started

® Can not call sleep

® Soft int are virtually identical to hard interrupts

CP — SMPng Jun 14, 2000J

Slide 25

/ Device driver interface
® Typically add mutex to softc

® Flag passed to intr_establish saying driver is MP
safe

® Mutex typically gotten
O Interrupt service routine
0 Safe to release and re-acquire mutex
O Timeout functions
o Top down entrances:
open/close/strategy/ioctl/start

® Unexpected behavior mtx_exit() followed by
mtx_enter()

® SCSI shares mutex between all layers
® Extra layers can be performance problem

\ CP — SMPng

Jun 14, 2000J

Slide 26

/

Malloc

® Single mutex
® Can’t hold any locks with M_WAITOK
® Can acquire Giant even without M_ WAITOK

Jun 14, 2000J

Slide 27

Random \
® Debugging

O Don’t return to user with mutexs held

O Don’t return to user with lock manager locks
held

® mi_switch() does not call cpu_switch()

CP — SMPng Jun 14, 2000J

Slide 28

/ Globally visible changes \

Sleep, tsleep
® Optional mutex passed in
® Giant is invisible argument
® Unless a timer is running some mutex must be used
® Typical usage:
mtx_enter(vbuf->b_mtxp, M _DEF)
while (! (vbuf->b_1flags & B_L DONE))

sleep(vbuf->b_mtxp, vbuf, PRIBIO);
mtx_exit(vbuf->b mtxp, M_DEF)

® Sets processor priority

® Natural locking order for wakeup() less than
perfect

\ CP — SMPng Jun 14, 2000J

Slide 29

//”

Globally visible changes \

Struct Buf
® Flags field split
® New field b_Iflags
o Contains bits which were protected by splbio
0B L DONE
oB L BUSY
0B L WANTED
0B _L SCANNED
O Access controller by buf lock(struct buf *) and
buf_unlock(struct buf *)
® Eufffe)r must be initialized with buf_initmtx(struct
u *
® No destroy function
® buf2mtx(struct buf *) used to get address of mutex

associated with buf
CP — SMPng Jun 14, 2000J

Slide 30

/

Globally visible changes \
Struct buf (continued)
® Typical usage:
int
biowait (vbuf)
register struct buf *vbuf;
{
buf_ lock(vbuf);
while (! (vbuf->b_1flags & B_L DONE))
sleep (buf2mtx(vbuf), vbuf, PRIBIO);
buf _unlock(vbuf);
if (buf_tstflags(vbuf, B_ERROR) == 0)
return (0);
return (vbuf->b_error ?
vbuf->b_error : EIO);
}

CP — SMPng Jun 14, 2000J

Slide 31

/

Globally visible changes \

timeout / untimeout
® timeout() changed and renamed to timeout()

® timeout() calls _timeout() with unsafe flag set()

® mp_timeout() calls _timeout() without unsafe flag
set()

® spin_timeout() calls timeout() with spin held flag
set()

® untimeout() can fail

CP — SMPng Jun 14, 2000J

Slide 32

/

_

Globally visible changes \

vnode

® Different fields in the vnode are protected by
different locks.
o VOP_LOCK

O This implies vop_nolock() has to totally goes
away

o v_interlock, VI LOCK(), VI_ UNLOCK()
o vnode free list mtx

® v_flag split into v_iflag and v_vflag
o Bits used with v_iflag are VI_
o Bits used with v_vflag are VV_

® Many to one mapping of vnodes to v_interlock
mutexs
O This implies that only a single interlock can be

CP — SMPng Jun 14, 2000J

Slide 33

//”

Globally visible changes

proc
® Likely most difficult area
® Many different locks for different fields
o no lock, doesn’t change after creation
o mutex associated with proc
o all proc mutex
O proc tree
O process group mutex
o pid hash table mtx
O sched lock
o proc lock in attach proc or attaching proc parent
o time lock
® Typically only lock one proc at a time
® When multiple order is child then parent
® Re-parenting is biggest problem
® all proc chain protected by reader/writer lock

\ ® overall hierarchy protected by reader/writer lock J
CP — SMPng Jun 14, 2000

Slide 34

Net

® Interface queues are leaf locks

® In general locking optimized for interrupt threads
O acquire pcb head
O acquire pch
o generally drop pcb head
O socket send/recv queue

® Have to drop and re-acquire lock from top
O drop send/recv queue
O acquire pcb head
O acquire pch
o generally drop pcb head
O acquire send/recv queue

® Net graphs may pose performance problem

~

CP — SMPng Jun 14, 2000J

Slide 35

/

Net Work Stack (continued)

® Locking buried in IF_ so typical coding just works

® Following get queue lock and leave lock:
o IF_QLOCK()
o IF_QFULL()
o IF_ PREPEND()

® Following release lock on completion:
o IF_QUNLOCK()
o IF_DROPJ)
o IF_ENQUEUE()

~

CP — SMPng Jun 14, 2000J

Slide 36

/

_

Net Work Stack (continued)

® Following lock and unlock queue:
o IF_DEQUEUE()
o IF_PREPEND()

® Following expect queue to be locked:
O IF_ENQUEUE_NOUNLOCK()
o IF_DEQUEUE_NOLOCK()

® Many/Most uses just work
if (IF_QFULL(ifq))
m_free(m);
IF DROP(ifq);
} else {
IF_ENQUEUE(ifq, m);
}

Jun 14, 2000J

Slide 37

/

NFS

® No NFS is major reason for people to not run kernel
® runs with real vop lock
® Share lock between server and client

~

CP — SMPng Jun 14, 2000J

Slide 38

/

Ktrace
® Broken in existing release

® Lock ordering problems
® Forks process to write data

Jun 14, 2000J

Slide 39

What should FreeBSD pickup?

Jun 14, 2000J

Slide 40

