
Impr oving the FreeBSD SMP implementation

A case study

Gr eg Lehey
The FreeBSD Project
grog@FreeBSD.org

30 October 2003

ABSTRACT

UNIX-derived operating systems have traditionally have a simplistic approach to
pr ocess synchr onization which is unsuited to multiprocessor application. Initial
Fr eeBSD SMP support kept this approach by allowing only one process to run in
ker nel mode at any time, and also blocked interrupts across multiple processors,
causing seriously suboptimal perfor mance of I/O bound systems. This paper de-
scribes the work done to remove this bottleneck, paying particular attention to the
pr oject management aspects and the particular challenges of a large open source
development project.

Introduction

Without doubt one of the most remarkable phenomena in the history of comput-
ers is the emergence of the Free Software movement, often called ‘‘Open Source’’.
Undisciplined groups of programmers with above-average ability and extreme mo-
tivation have set out to produce better software than established commercial com-
panies. Their success has been so great that many of the established companies
have taken on the cause and are running their own free software projects.

The press has taken up the cause in its usual exaggerated way: Open Source is the
way of the future, commercial software is doomed, and of course many people,
both inside the industry and outside. The truth is more dif ferentiated, of course.
This paper looks at some of the issues in a real-life development project.

The problem

An interesting aspect of free UNIX and UNIX-like implementations such as Free-
BSD and Linux is that their perfor mance and stability on machines of the early 90’s
was often significantly better than the perfor mance of commercial platforms, no-
tably Microsoft. Comparisons have shown that the differ ence in perfor mance
might appear to be several orders of magnitude. For example, a few years ago Mi-

cr osoft recommended three Compaq ProLiant 5000s or 5500s with four Pentium
Pr o pr ocessors and 512 MB memory each in order to serve 6 GB a day via ftp. At
any one time, only one of the systems was active; the others were needed for
failover if the active system crashed. At the same time, wcar chive.cdrom.com, a
single Pentium Pro running FreeBSD, was delivering 700 GB per day. It got by
just fine without failover.

The free OS community had become so used to this state of affairs that it came as
a shock when in April 1999 Microsoft published the results of a benchmark done
by Mindcraft, which showed that Microsoft NT outperfor med Linux by a factor of
up to three times.

Parts of the Linux community reacted swiftly: they claimed that the benchmark re-
sults were wrong, that Mindcraft deliberately didn’t tune the Linux installations
they used, and a number of other things. Others in the Linux community looked
mor e car efully and observed that, though the benchmarks measured a rather con-
trived use of web servers, they did in fact show an area where Micr osoft signifi-
cantly outperfor med Linux.

Mor e car eful analysis of the tests showed that one of the chief problems with the
Linux approach was the poor multiprocessor (SMP) support.

Fr eeBSD has a reputation for significantly outperfor ming Linux, so it would be rea-
sonable for the FreeBSD community to repeat the tests. Instead, the FreeBSD
community kept very quiet: FreeBSD had exactly the same problem with the SMP
implementation. The following sections summarize the issues.

The old FreeBSD SMP implementation

A crucial issue in the design of an operating system is the manner in which it
shar es resources such as memory, data structures and processor time. In the UNIX
model, the main clients for resources are processes and interrupt handlers. Inter-
rupt handlers operate completely in kernel space, primarily on behalf of the sys-
tem. Processes normally run in one of two differ ent modes, user mode and kernel
mode. User mode code is the code of the program from which the process is de-
rived, and kernel mode code is part of the kernel. This structur e gives rise to mul-
tiple potential conflicts. The most obvious demand a process or interrupt routine
places on the system is that it wants to run: it must execute instructions. In tradi-
tional UNIX, the rules governing this sharing are:

• Ther e is only one processor. All code runs on it.

• If both an interrupt handler and a process are available to run, the interrupt
handler runs.

• Interrupt handlers have differ ent priorities. If one interrupt handler is running
and one with a higher priority becomes runnable, the higher priority interrupt
immediately preempts the lower priority interrupt.

• The scheduler runs when a process voluntarily relinquishes the processor, its
time slice expires, or a higher-priority process becomes runnable. The sched-
uler chooses the highest priority process which is ready to run.

• If the process is in kernel mode when its time slice expires or a higher priority
pr ocess becomes runnable, the system waits until it retur ns to user mode or
sleeps before running the scheduler.

The following diagrams illustrate the differ ence caused by waiting for the process
to relinquish the kernel:

Inter r upt handler
Active
Idle

High prior ity process
Ker nel
User
SRUN
SSLEEP

Low prior ity process
Ker nel
User
SRUN
SSLEEP

P1 woken

P2 runs
P2 preempted

P2 runs

Ideal single processor scheduling

Inter r upt handler
Running
Active
Idle

High prior ity process
Ker nel
User
SRUN
SSLEEP

Low prior ity process
splbio
Ker nel
User
SRUN
SSLEEP

P1 woken

P2 runs P2 preempted P2 runs

Real single processor scheduling

As can be seen, the only differ ence is in the slight delay before the high-priority
pr ocess regains control. The pr ocessor always has something constructive to do,
so the overall throughput remains unchanged. This method works acceptably for
the single processor machines for which it was designed. In the following section,
we’ll see the reasoning behind the last decision.

Kernel data objects

The most obvious problem is access to memory. Moder n UNIX systems run with
memory protection, which prevents processes in user mode from accessing the
addr ess space of other processes. This pr otection no longer applies in kernel
mode: all processes share the kernel address space, and they need to access data
shar ed between all processes. For example, the fork() system call needs to
allocate a proc structur e for the new process by taking the first available struct
proc entry off a freelist and initializing it.

Clearly it is necessary to ensure that the currently executing process is not
interrupted while manipulating this list, maybe because a higher priority process
wants to run. If it is interrupted while it is removing the entry from the list, and
the interrupting code also allocates a process structure, it is possible for both
pr ocesses to use the same struct proc entry, creating the process equivalent of
Siamese twins.

UNIX solves this issue with the rule ‘‘The UNIX kernel is non-preemptive’’. This
means that when a process is running in kernel mode, no other process can
execute kernel code until the first process relinquishes the kernel voluntarily,
either by retur ning to user mode, or by sleeping.

Synchronizing processes and interrupts

The non-preemption rule only applies to processes. Interrupts happen
independently of process context, so a differ ent method is needed. In device
drivers, the process context (‘‘top half’’) and the interrupt context (‘‘bottom half’’)
must share data. Two separate issues arise here: each half must ensure that any
changes to shared data structures occur in a consistent manner, and they must find
a way to synchronize with each other.

Protection

Interrupt handlers cannot be interrupted by processes, and they don’t normally
shar e data structures with other interrupt handlers, so they don’t need to perfor m
anything in particular to protect themselves. On the other hand, the process
context must take steps to ensure that it is not interrupted while manipulating
shar ed data. They do this with one of the splx functions, which lock out specific
interrupts. One of the most significant sources of bugs in drivers is inadequate
synchr onization with the bottom half.

Waiting for the other half

In other cases, a process will need to wait for some event to complete. The most
obvious example is I/O: a process issues an I/O request, and the driver initiates
the transfer. It can be a long time before the transfer completes: if it’s reading
keyboard input, for example, it could be weeks before the I/O completes. When
the transfer completes, it causes an interrupt, so it’s the interrupt handler which
finally determines that the transfer is complete and notifies the process.
Traditional UNIX perfor ms this synchronization with the functions sleep and
wakeup. The top half of a driver calls sleep when it wants to wait for an event,
and the bottom half calls wakeup when the event occurs.

It’s important to note that this model is asymmetric: processes perfor m
synchr onization, interrupt handlers don’t.

Adapting the UNIX model to SMP

A number of the basic assumptions of this model no longer apply to SMP, and
others become more of a problem:

• Mor e than one processor is available. Pr ocesses can run in parallel.

• Interrupt handlers and user processes can run on differ ent pr ocessors at the
same time.

• The ‘‘non-preemption’’ rule is no longer sufficient to ensure that two processes
can’t execute at the same time, so it would theoretically be possible for two
pr ocesses to allocate the same memory.

• Locking out interrupts must happen in every processor. This can adversely
af fect per formance.

One of the most far-r eaching aspects of this situation is that interrupt handlers can
no longer rely on having the system to themselves. They must find a way of
synchr onizing, something they were never intended to do. Interrupt lockout is no
longer sufficient, and the only alternative is some variant on the sleep/wakeup
paradigm. But interrupt handlers aren’t equipped to sleep.

The initial FreeBSD model

The original version of FreeBSD SMP support solved these problems in a manner
designed for reliability rather than perfor mance: ef fectively it found a method to
simulate the single-processor paradigm on multiple processors. Specifically, only
one process could run in the kernel at any one time. The system ensured this
with a spinlock, the so-called Big Kernel Lock (BKL), which ensured that only one
pr ocessor could be in the kernel at a time. On entry to the kernel, each processor
attempted to get the BKL. If another processor was executing in kernel mode, the
other processor perfor med a busy wait until the lock became free. In an extreme
case, this waiting could degrade SMP perfor mance to below that of a single
pr ocessor machine.

The following diagrams show the effect of the BKL:

Inter r upt handler
Active
Idle

High prior ity process (CPU 0)
Ker nel
User
SRUN
SSLEEP

Low prior ity process (CPU 1)
Ker nel
User
SRUN
SSLEEP

P1 woken

Ideal dual processor scheduling

Inter r upt handler
Active
Idle

High prior ity process (CPU 0)
Ker nel
User
SPIN
SRUN
SSLEEP

Low prior ity process (CPU 1)
Ker nel
User
SPIN
SRUN
SSLEEP

P1 woken

Real dual processor scheduling

In this example, the low priority process must spin while waiting to enter the
ker nel. Also, after being woken the high priority process spins until the low
priority process leaves the kernel. This causes a significant waste of time. Things
ar e even more extr eme on a four processor system with four processes running
without sleeping:

Process in CPU 0
Ker nel
User
SPIN

Process in CPU 1
Ker nel
User
SPIN

Process in CPU 2
Ker nel
User
SPIN

Process in CPU 3
Ker nel
User
SPIN

Ideal quad processor scheduling

Process in CPU 0
Ker nel
User
SPIN

Process in CPU 1
Ker nel
User
SPIN

Process in CPU 2
Ker nel
User
SPIN

Process in CPU 3
Ker nel
User
SPIN

Real quad processor scheduling
In this example, each processor spends more than 50% of its time spinning. The
overall throughput is less than that of an ideal two-processor system.

Improving the SMP implementation

Multiple processor machines have been around for a long time, since before UNIX
was written. During this time, a number of solutions to this kind of problem have
been devised. The problem was less to find a solution than to find a solution
which would fit in the UNIX environment, and which was simple enough to be
implemented by a group of volunteers. The Linux community, with some
commercial backing, went their own way, coming up with a pragmatic result
which addressed the issues at hand, but which did not satisfy many of the
members of the FreeBSD project. Instead, for quite some time, FreeBSD did
nothing.

Part of the problem was the nature of the project: we weren’t selling anything, we
wer e working for our personal satisfaction. If nobody who suffer ed as a result of
the perfor mance issues was prepar ed to do the work, it wouldn’t happen. In
addition, any changes would be pervasive, and they would requir e both a lot of
work and cooperation on an unprecedented scale.

Salvation

In early 2000, a solution presented itself. The FreeBSD project had been largely
supported by Walnut Creek CDROM. With the advent of high-speed Internet
links, the CD-ROM market was no longer what it used to be, and Walnut Creek
merged with BSDi, the vendors of the commercial BSD variant BSD/OS. Initially
ther e was much talk of merging the operating systems as well, but this met with
considerable resistance in some areas. Finally a compr omise was reached:
Fr eeBSD would gain access to the complete BSD/OS source code and would be
fr ee to merge any reasonable part of the operating system.

BSDi already had a functional prototype of greatly improved SMP support, dubbed
SMPng. The Fr eeBSD pr oject decided to import the code into FreeBSD and also
adopted the name. Many of the BSDi engineers came from Sun Microsystems, and
they brought some of the Solaris ideas with them. One of the most significant of
these ideas was the concept of interrupt threads, which enabled interrupt handlers
to block. This enabled removal of the giant lock in favour of finer-grained
locking.

The initial meeting

In June 2000, the FreeBSD project held a two-day meeting at the Yahoo! complex
in Sunnyvale CA in order to determine how to proceed with importing the code.
This was just before the USENIX conference down the road in Monterey, and a
total of 20 people attended. Ther e was no restriction on attendance: all people
who wished to attend did so. Thr ee attendees were from Apple Computer, two
fr om BSDi, three from Yahoo!, and eleven from the FreeBSD project. Only about
half these people had kernel development experience.

The meeting started with a discussion of the current BSDi code and the issues at
hand, presented by Chuck Paterson, BSDi’s chief developer.

SMP, new generation

BSDi’s new implementation of SMP was never released: BSDi was acquired by
Wind River Systems, who stopped further development in early 2003 and who
have since ceased marketing the product. The following discussion describes both
the initial BSDi version and the changes made during the implementation of
Fr eeBSD SMPng.

The most radical differ ence in SMPng are:

• Interrupt code (‘‘bottom half’’) now runs in a process context, enabling it to
block if necessary. This process context is termed an interrupt thread.

• Interrupt lockout primitives (splfoo) have been removed. The low-level
interrupt code still needs to block interrupts briefly, but the interrupt service
routines themselves run with interrupts enabled. Instead of locking out
interrupts, the system uses mutexes, which may be either spin locks or
blocking locks.

Inter r upt threads

The single most important aspect of the implementation is the introduction of a
pr ocess or ‘‘thread’’ context for interrupt handlers. This change involves a number
of tradeoffs:

• The process context allows a uniform appr oach to synchronization: it is no
longer necessary to provide separate primitives to synchronize the top half and
the bottom half. In particular, the spl primitives are no longer needed. For
compatibility reasons, the calls have been retained, but they translate to no-ops.

• The action of scheduling another process takes significantly longer than
interrupt overhead, which also remains.

• The UNIX approach to scheduling does not allow preemption if the process is
running in kernel mode.

SMPng solves the latency and scheduling issues with a technique known as lazy
scheduling: on receiving an interrupt, the interrupt stubs note the PID of the
interrupt thread, but they do not schedule the thread. Instead, it continues
execution in the context of the interrupted process. The thr ead will be scheduled
only in the following circumstances:

• If the thread has to block.

• If the interrupt nesting level gets too deep.

This method should offer negligible overhead for the majority of interrupts.

Fr om a scheduling viewpoint, the threads differ from normal processes in the
following ways:

• They never enter user mode, so they do not have user text and data segments.

• They all share the address space of process 0, the swapper.

• They run at a higher priority than all user processes.

• Their priority is not adjusted based on load: it remains fixed.

• An additional process state SWAIT has been introduced for interrupt processes
which are curr ently idle: the normal ‘‘idle’’ state is SSLEEP, which implies that
the process is sleeping.

The the initial BSD/OS implementation of interrupt threads was a particularly
err or-pr one pr ocess, and that the debugging tools were inadequate. Due to the
natur e of the FreeBSD project, we considered it imperative to have the system
relatively functional at all times during the transition, so we decided to implement
interrupt threads in two stages. The initial implementation was very similar to that
of normal processes. This of fered the benefits of relatively easy debugging and of
stability, and the disadvantage of a significant drop in perfor mance: each interrupt
could potentially cause two context switches, and the interrupt would not be
handled while another process, even a user process, was in the kernel.

Experience with the initial implementation met expectations: we have seen no
stability problems with the implementation, and the perfor mance, though
significantly worse, was not as bad as we had expected.

At the time of writing, we have improved the implementation somewhat by
allowing limited kernel preemption, allowing interrupt threads to be scheduled
immediately rather than having to wait for the current process to leave kernel
mode. The potential exists for complete kernel preemption, where any higher
priority process can preempt a lower priority process running in the kernel, but
we are not sure that the benefits will outweigh the potential bug sources.

A lazy scheduling implementation has been tested, but it is not currently in the
-CURRENT ker nel. Due to the current kernel lock implementation, it would not
show any significant perfor mance incr ease, and problems can be expected as
additional kernel components are migrated from under Giant. This issue will
pr obably be reimplemented in terms of the FreeBSD KSE (Ker nel Schedulable
Entities) project.

Not all interrupts have been changed to threaded interrupts. In particular, the old
fast interrupts remain relatively unchanged, with the restriction that they may not
use any blocking mutexes. Fast interrupts have typically been used for the serial
drivers, and are specific to FreeBSD: BSD/OS has no corresponding functionality.

Locking constructs

The initial BSD/OS implementation defined two basic types of lock, called mutex :

• The default locking construct is the spin/sleep mutex. This is similar in concept
to a semaphore with a count of 1, but the implementation allows spinning for a
certain period of time if this appears to be of benefit (in other words, if it is
likely that the mutex will become free in less time than it would take to
schedule another process), though this feature is not currently in use. It also
allows the user to specify that the mutex should not spin. If the process
cannot obtain the mutex, it is placed on a sleep queue and woken when the
resource becomes available.

• An alternate construct is a spin mutex. This corresponds to the spin lock which
was already present in the system. Spin mutexes are used only in exceptional
cases.

The implementation of these locks was derived almost directly from BSD/OS, but
has since been modified significantly.

In addition to these locks, the FreeBSD project has included two further locking
constructs:

Condition variables ar e built on top of mutexes. They consist of a mutex and a
wait queue. The following operations are supported:

• Acquir e a condition variable with cv_wait(), cv_wait_sig(),
cv_timedwait() or cv_timedwait_sig().

• Befor e acquiring the condition variable, the associated mutex must be held.
The mutex will be released before sleeping and reacquir ed on wakeup.

• Unblock one waiter with cv_signal().

• Unblock all waiters with cv_broadcast().

• Wait for queue empty with cv_waitq_empty.

• Same functionality available from the msleep function.

Shar ed/exclusive locks, or sx locks, are effectively read-write locks. The differ ence
in terminology came from an intention to add additional functionality to these
locks. This functionality has not been implemented, so sx locks are still the same
thing as read-write locks: they allow access by multiple readers or a single writer.

The implementation of sx locks is relatively expensive:

struct sx {
struct lock_object sx_object;
struct mtx sx_lock;
int sx_cnt;
struct cv sx_shrd_cv;
int sx_shrd_wcnt;
struct cv sx_excl_cv;
int sx_excl_wcnt;
struct proc *sx_xholder;

};

They should be only used where the vast majority of accesses is shared.

• Cr eate an sx lock with sx_init().

• Attain a read (shared) lock with sx_slock() and release it with
sx_sunlock().

• Attain a write (exclusive) lock with sx_xlock() and release it with
sx_xunlock().

• Destr oy an sx lock with sx_destroy.

Removing the Big Ker nel Lock

These modifications made it possible to remove the Big Kernel Lock. The initial
implementation replaced it with two mutexes:

• Giant is used in a similar manner to the BKL, but it is a blocking mutex.
Curr ently it protects all entry to the kernel, including interrupt handlers. In
order to be able to block, it must allow scheduling to continue.

• sched_lock is a spin lock which protects the scheduler queues.

This combination of locks supplied the bare minimum of locks necessary to build
the new framework. In itself, it does not improve the perfor mance of the system,
since processes still block on Giant.

Idle processes

The planned light-weight interrupt threads need a process context in order to
work. In the traditional UNIX kernel, there is not always a process context: the
pointer curproc can be NULL. SMPng solves this problem by having an idle
pr ocess which runs when no other process is active.

Recur sive locking

Nor mally, if a lock is locked, it cannot be locked again. On occasions, however, it
is possible that a process tries to acquire a lock which it already holds. Without
special checks, this would cause a deadlock. Many implementations allow this so-
called recursive locking. The locking code checks for the owner of the lock. If
the owner is the current process, it increments a recursion counter. Releasing the
lock decrements the recursion counter and only releases the lock when the count
goes to zero.

Ther e is much discussion both in the literature and in the FreeBSD SMP project as
to whether recursive locking should be allowed at all. In general, we have the
feeling that recursive locks are evidence of untidy programming. Unfortunately,
the code base was never designed for this kind of locking, and in particular library
functions may attempt to reacquir e locks already held. We have come to a
compr omise: in general, they are discouraged, and recursion must be specifically
enabled for each mutex, thus avoiding recursion where it was not intended.

Migrating to fine-grained locking

Implementing the interrupt threads and replacing the Big Kernel Lock with Giant
and schedlock did not result in any perfor mance impr ovements, but it provided
a framework in which the transition to fine-grained locking could be perfor med.
The next step was to choose a locking strategy and migrate individual portions of
the kernel from under the protection of Giant.

One of the dangers of this approach is that locking conflicts might not be
recognized until very late. In particular, the FreeBSD project has differ ent people
working on differ ent ker nel components, and it does not have a strong centralized
architectural committee to determine locking strategy. As a result, we developed
the following guidelines for locking:

• Use sleep mutexes. Spin mutexes should only be used in very special cases
and only with the approval of the SMP project team. The only current
exception to this rule is the scheduler lock, which by nature must be a spin
lock.

• Do not tsleep() while holding a mutex other than Giant. The
implementation of tsleep() and cv_wait() automatically releases Giant
and gains it again on wakeup, but no other mutexes will be released.

• Do not msleep() or cv_wait() while holding a mutex other than Giant or
the mutex passed as a parameter to msleep(). msleep() is a new function
which combines the functionality with atomic release and regain of a specified
mutex.

• Do not call a function that can grab Giant and then sleep unless no mutexes
(other than possibly Giant) are held. This is a consequence of the previous
rules.

• If calling msleep() or cv_wait() while holding Giant and another mutex,
Giant must be acquired first and released last. This avoids lock order
reversals.

• Except for the Giant mutex used during the transition phase, mutexes protect
data, not code.

• Do not msleep() or cv_wait() with a recursed mutex. Giant is a special
case and is handled automagically behind the scenes, so don’t pass Giant to
these functions.

• Try to hold mutexes for as little time as possible.

• Try to avoid recursing on mutexes if at all possible. In general, if a mutex is
recursively entered, the mutex is being held for too long, and a redesign is in
order.

One of the weaknesses of the project structure is that there is no overall strategy
for locking. In many cases, the choice of locking construct and granularity is left
to the individual developer. In almost every case, locks are leaf node locks: very
little code locks more than one lock at a time, and when it does, it is in a very

tight context. This results in relatively reliable code, but it may not be result in
optimum perfor mance.

Ther e ar e a number of reasons why we persist with this approach:

• Fr eeBSD is a volunteer project. Developers do what they think is best. They
ar e unlikely to agree to an alternative implementation.

• We do not currently have enough architectural direction, nor enough
experience with other SMP systems, to come up with an ideal locking strategy.
This derives from the volunteer nature of the project, but note also that large
UNIX vendors have found the choice of locking strategy to be a big problem.

• Unlike large companies, there is much less concern about throwaway
implementations. If we find that the perfor mance of a system component is
suboptimal, we will discard it and start with a differ ent implementation.

Migrating interrupt handlers

This new basic structure is now in place, and implementation of finer grained
locking is proceeding. Giant will remain as a legacy locking mechanism for code
which has not been converted to the new locking mechanism. For example, the
main loop of the function ithread_loop, which runs an interrupt handler,
contains the following code:

if ((ih->ih_flags & IH_MPSAFE) == 0)
mtx_lock(&Giant);

....
ih->ih_handler(ih->ih_argument);
if ((ih->ih_flags & IH_MPSAFE) == 0)

mtx_unlock(&Giant);

The flag INTR_MPSAFE indicates that the interrupt handler has its own
synchr onization primitives.

A typical strategy planned for migrating device drivers involves the following
steps:

• Add a mutex to the driver softc.

• Set the INTR_MPSAFE flag when registering the interrupt.

• Obtain the mutex in the same kind of situation where previously an spl was
used. Unlike spls, however, the interrupt handlers must also obtain the mutex
befor e accessing shared data structures.

Pr obably the most difficult part of the process will involve larger components of
the system, such as the file system and the networking stack. We have the
example of the BSD/OS code, but it’s currently not clear that this is the best path
to follow.

Decisions at Yahoo!

After some discussion, we agreed to base the new SMP implementation on BSDi’s
SMPng implementation. The first question was how to proceed with the imports.
It turned out that not many people wanted to participate. Fr om the minutes of the
meeting, we find:

• Matt Dillon will put in locking primitives and schedlock. This includes
resurr ecting our long-dead idle process to scan the run queue for interrupt
thr eads. He won’t have time for NFS.

• Gr eg Lehey will implement the heavyweight interrupt processes and lightweight
interrupt threads.

• Doug Rabson will do Alpha machine-dependent work and keep in touch with
i386 work. Doesn’t want to commit to doing NFS.

• Paul Saab will add kdebug functionality to our DDB.

• Jonathan Lemon wants to convert network drivers.

• Chuck Paterson will be active in a passive role to support the project. He
expects to spend about 50% of his time doing so.

• Jason Evans will be the project manager, the first time we’ve had anybody
doing this job.

Of these, only Matt, Greg and Jason had specific tasks assigned.

Sta bility

We knew that the changes necessary to make SMPng would destabilize the system
for a considerable period of time. Jason announced the project on 19 June 2000
with the following summary:

Summary: -current will be destabilized for an extended period (on the order of months).
A tag (not a branch) will be laid down before the initial checkin, and non-developers
should either stick closely to that tag until the kernel stabilizes, or expect large doses of
pain. This tag will be laid down as soon as June 26, 00:00 PST, with a minimum 24 hour
war ning befor ehand.

This caused some concern in the developer community. Warner Losh replied:

A few days or weeks I don’t have a prblem with, but a few months is flat not acceptible.
It is too long. If the code is that green, then some other mechanism needs to be used to
facilitate collaberative working.

I’d rather see a firm deadline proposed (eg, we’ll commit the core on June 26, and will
be done by Aug 26) so that I know what to expect rather than having the nebulous a few
months phrase kicked around.

After considerable discussion, we agreed to delay the initial commit until the code
was at least vaguely functional. In the interim we maintained giant patch sets,
which were very painful.

Initial progress

Matt Dillon did the initial work, not exactly as planned. He ran into significant
dif ficulties with the differ ence between BSD/OS and FreeBSD, and due to time
constraints he ended up doing his own implementation, which was not what we
had agreed on. One of the guidelines which we had established was to use
BSDi’s code wherever possible in order to introduce as few bugs as possible.
Ultimately a lot of much of Matt’s work was re-imported as intended. Matt
completed his work on 25 June 2000, only a few days after the meeting.

Next, still in single threaded mode, Greg Lehey (myself) changed the interrupt
model to a ‘‘heavyweight thread’’ approach. A heavyweight thread is effectively a
high-priority process, so interrupts would cause context switches. The final goal is
to have light-weight interrupt threads which would only context switch if they
needed to wait on something, or if they interrupted another interrupt thread. We
chose this sub-optimal approach for reasons of stability: BSDi had tried each on
dif ferent platforms (heavy-weight on SPARC, light-weight on Intel), and they found
that debugging was greatly simplified when using heavy-weight interrupt threads.

I had originally estimated two weeks for converting the interrupt system, based on
the fact that we already had functional code which we could import from BSD/OS.
In fact, it took two months, during which people couldn’t do much other work.
It’s instructive to look at the reasons for this delay:

• BSD/OS and FreeBSD are both derived from 4.4BSD, the last version of BSD
UNIX developed at the Computer Sciences Research Group of the University of
Califor nia at Berkeley. As such, they share a gr eat deal of code, and it’s
relatively easy for a kernel programmer familiar with one operating system to
read, recognize and understand the code of the other operating system. The
same applies to NetBSD and OpenBSD, which are also derived from 4.4BSD.

• 4.4BSD did not address a number of the issues facing modern operating
systems. In particular, the manner in which hardware components are
identified (‘‘probing’’), though still more advanced than other UNIX variants,
was relatively primitive, and both FreeBSD and BSD/OS had modified it
significantly, and of course differ ently. Again, this issue exists in a similar
manner with NetBSD and OpenBSD, though in this case the differ ence is less,
since developers regularly compare code.

• The perfor mance of the 4.4BSD interrupt system was suboptimal. Fr eeBSD
intr oduced a new kind of interrupt, a fast interrupt, to addr ess this problem.
BSD/OS does not have fast interrupts.

• Even the BSD/OS code was incompatible between SPARC and Intel. Separate
pr ogrammers had written the code for each platform, resulting not only in
dif ferent implementations, but also differ ent names for the same function.

• We wer e importing the code for heavy-weight interrupt threads, which was
only in the SPARC port.

I spent something like a month comparing four differ ent code bases: BSD/OS 4.0
(their old implementation), BSD/OS SMPng Intel, BSD/OS SMPng SPARC, and
Fr eeBSD 4-CURRENT. In this time, I learnt a lot:

• Importing kernel code from differ ent operating systems, even closely related
systems, is significantly more dif ficult than most people understand. I became
quite sympathetic to the views of people who didn’t want to merge BSD/OS
and FreeBSD.

• I also became quite sympathetic to Matt Dillon’s violation of our agreement to
import the BSD/OS code. He was working on time constraint, and unlike me,
he met his deadline. It’s difficult to say whether his approach was correct, but
it was certainly very understandable.

• I again appreciated the availability of a multiple monitor X server. I had
multiple editor windows up on each of three monitors, and I had to ensure that
I only edited a specific code base in specific windows: the code was so similar
that even so I frequently confused one code base for another.

Finishing this work was immensely satisfying: finally we had something obvious to
distinguish the system from any other UNIX or UNIX-like system. For example,
the interrupt processes are visible in a ps listing:

USER PID %CPU %MEM VSZ RSS TT STAT STARTED TIME COMMAND
root 11 99.0 0.0 0 12 ?? RL 2:11PM 150:09.29 (idle: cpu1)
root 12 99.0 0.0 0 12 ?? RL 2:11PM 150:08.71 (idle: cpu0)
root 1 0.0 0.3 756 384 ?? ILs 2:11PM 0:00.11 /sbin/init --
root 13 0.0 0.0 0 12 ?? WL 2:11PM 0:30.61 (swi8: tty:sio clock)
root 15 0.0 0.0 0 12 ?? WL 2:11PM 0:01.32 (swi1: net)
root 2 0.0 0.0 0 12 ?? DL 2:11PM 0:02.35 (g_event)
root 3 0.0 0.0 0 12 ?? DL 2:11PM 0:01.53 (g_up)
root 4 0.0 0.0 0 12 ?? DL 2:11PM 0:01.63 (g_down)
root 16 0.0 0.0 0 12 ?? DL 2:11PM 0:01.05 (random)
root 17 0.0 0.0 0 12 ?? WL 2:11PM 0:00.16 (swi7: task queue)
root 18 0.0 0.0 0 12 ?? WL 2:11PM 0:00.00 (swi6:+)
root 5 0.0 0.0 0 12 ?? DL 2:11PM 0:00.00 (taskqueue)
root 21 0.0 0.0 0 12 ?? WL 2:11PM 0:00.01 (swi3: cambio)
root 22 0.0 0.0 0 12 ?? WL 2:11PM 0:00.08 (irq14: ata0)
root 24 0.0 0.0 0 12 ?? WL 2:11PM 0:02.38 (irq2: rl0 uhci0)
root 25 0.0 0.0 0 12 ?? DL 2:11PM 0:00.00 (usb0)
root 26 0.0 0.0 0 12 ?? DL 2:11PM 0:00.00 (usbtask)
root 27 0.0 0.0 0 12 ?? WL 2:11PM 0:00.00 (irq5: fwohci0++)
root 28 0.0 0.0 0 12 ?? WL 2:11PM 0:00.00 (irq10: sym0)
root 29 0.0 0.0 0 12 ?? WL 2:11PM 0:00.01 (irq11: sym1)
root 30 0.0 0.0 0 12 ?? WL 2:11PM 0:00.00 (irq1: atkbd0)
root 31 0.0 0.0 0 12 ?? WL 2:11PM 0:00.00 (irq6: fdc0)
root 6 0.0 0.0 0 12 ?? DL 2:11PM 0:00.04 (pagedaemon)
root 7 0.0 0.0 0 12 ?? DL 2:11PM 0:00.00 (vmdaemon)
root 39 0.0 0.0 0 12 ?? DL 2:11PM 0:01.00 (syncer)

For the first time, we also had the ability to measure the time used by each
interrupt.

The interrupt threads were finally committed to the FreeBSD source tree on 6
September 2000. After this, more parallel work could begin.

Progress after September 2000

By the end of September, the new system was running, though a number of areas
wer e particularly fragile. Jason Evans, the project manager, had a particularly
delicate task to handle: unlike a commercial project manager, he could not assign
tasks to the people whom he found most suitable, nor requir e that anything be
finished by a specific data. Managing volunteer projects is difficult at the best of
times.

Early on, John Baldwin had joined the group, to be followed by Jake Burkholder.
Neither of these people had been at the meeting, but they ended up doing more
and more of the work. John was a BSDi employee, and as a result of his interest
was given time to work on the project; Jake was a student in Tor onto, and none of
us had ever met him. The only people who had been at the meeting who were
still working on the project were Jason Evans, Doug Rabson and myself. Doug
was doing some coding for Alpha support, and Jason wasn’t coding.

As the year continued, John and Jake became the mainstay of the project. I had
other demands on my time, and the only outstanding item I had to do was to
write the light-weight threads. For a number of reasons, we decided to postpone
this particular item.

A lot of the work done during this time was of cosmetic nature. The locking code
which we had imported from BSD/OS was very difficult to read, and a rewrite was
definitely in order; the question was whether the time was ripe. At the same time
a number of functions were moved from one file to another, and their names
changed. This is not necessarily factor unique to open source development, of
course: very similar things happened within BSDi between the SPARC and Intel
ports.

Round about this time, the project appears to have lost focus. The basic structure
was in place for the next step, which involved investigating how to implement
locking of the various subsystems of the kernel. At this stage, we had only one
kind of locking construct, confusingly called a mutex, in fact an adaptive lock. We
had discussed other locking constructs at the meeting at Yahoo!, in particular
condition variables and reader-writer locks, and had come to the conclusion that
we should first complete the implementation of the existing system before
worrying about other locking constructs. The problem was that this did not suit
some of the participants, and so they implemented the constructs they wanted.

We had already established that terminology was one of the big issues in
discussing lock nomenclature. The ter m mutex can be applied to all locking
constructs, but we chose to use it to describe an adaptive lock. For reasons left to
individuals, we ended up with more unusual names. Thus the implementation of
reader/writer locks started off being called sex_lock, later changed to sx_lock, for
shar ed/exclusive lock.

In the new year, Jason Evans found that he did not have time for project
management. On 5 March 2001, he wrote:

On another note, I have accepted a job at Sendmail, and am stepping down as SMP
pr oject manager due to anticipated time constraints. The SMP project has been in
pr ogress for 8 months, and we have 3 to 4 months until the focus of the project needs to
shift from development of functionality to perfor mance and stability improvements.
Ther e ar e plenty of disjoint tasks that can be picked up by developers not currently
involved in the SMP project. If you want FreeBSD 5.0 to be a success, please consider
what you can do to help make it so. Ther e ar e several unassigned tasks on the task list,
and plenty more in the minds of the SMP developers.

Ther e was no replacement project manager. At this stage, a relatively large
number of people were working on small parts of the project. Communication
was probably better than in a commercial project, but without a project manager it
was difficult to coordinate their activities. What coordination went on was done
by consensus on IRC channels or on mailing lists. In a number of cases, a
developer committed code without review and broke the system for several days.

IRC is not an ideal communications medium for this kind of project. By virtue of
its immediate nature, it requir es people to be paying attention all the time if they
ar e to gain anything from it. The project is spread round the Earth, which makes
this impractical because of time zone differ ences. It’s possible to read the log files,
but the volume makes this impractical. In addition, the anarchistic nature of the
medium makes it difficult to discuss things in a calm manner. One Linux core
developer joined the channel and presented some good views, but one participant
decided that he didn’t want to see him on that channel and banned him. Over the
course of time, the core developers became those who were at home on IRC.

Testing and Debugging

Part of planning a development project is attention to the entire project, not just
the software development. Such pr ojects include a QA team to ensure that the
testing covers the entire product and not just individual components. Other team
members address debugging and perfor mance.

The SMPng project has not addressed these issues effectively. The BSD/OS port
included a number of debugging aids. Fr eeBSD adopted those which were easy
to port and omitted the rest, in particular a large part of the kernel trace routines.
The project would benefit from more debugging tools, but they’re not the kind of
activity which attracts people, so it isn’t getting done. This is disappointing in
some ways, because there are plenty of capable ‘‘junior hackers’’ who could
per form this kind of task, but for some reason, probably lack of coordination or
communication, nobody has stepped forward to do it.

Ther e’s an interesting paradox here: in a commercial environment it would
pr obably be easier to get the tools written, but in an open source environment it’s
possible that the quality of the tools would be better, since the person writing
them would be identified with the quality of the tools. In a commercial
envir onment, once the tools were usable, the project manager would find
something else for the person to do.

Documentation

Traditionally, kernel code documentation has been poor. This is not the case for
SMPng: the lead developers have been very conscientious about writing man
pages for the individual functions. This is an interesting contrast to the debug
tools, and it is probably due to personal prefer ences. Unfortunately, the
documentation addresses only the details: overall project documentation is scarce,
and this makes it more dif ficult for newcomers to join the project.

Perfor mance

Another issue that has not been actively examined is perfor mance. The reason for
the rewrite is to improve perfor mance on SMP systems. This poses a number of
questions:

• What effects does this have on the single processor systems which still make
up the bulk of the installed base? The expectation is that the changes will have
minimal impact, and that it may be positive.

• How many processors will the implementation support? This is a rather
meaningless metric, since almost any implementation, even the old ‘‘Big Kernel
Lock’’ implementation, will gain some advantage from any number of
additional processors, and it’s very dependent on the application. Nevertheless,
it is a question often asked. In view of the massively parallel processor
architectur es curr ently under development, however, it’s a very important one.
Putting it more specifically, will SMPng support 32 processor SMP systems?
Again, we can’t know the answer, but the feeling is that it will probably not do
very well against commercial UNIX implementations such as AIX.

• How much good will the light-weight threads do at the moment? The intention
was to start the implementation of light-weight threads as soon as the
heavyweight threads were stable, but this got deferred based on the
assumption that, since nearly all interrupt threads needed to get the Giant
lock, this would normally involve scheduling anyway. This is a case which
could be tested now, but which would involve a lot of possibly unnecessary
work.

The only answer we have at the moment is that the perfor mance is notably worse
than the perfor mance of the old implementation, in the order of 20% to 30%.

Sta bility

Fr eeBSD is recognized as a very stable operating system. How well does the
curr ent SMPng implementation live up to this reputation? For some time the
answer was ‘‘not very well’’. For some time, there wer e a number of problems
running on specific hardware, but these now seem to have been fixed, and
Fr eeBSD release 5 is at least as stable as its predecessors.

When should we release it?

After SMPng had been in the -CURRENT branch of the FreeBSD source tree for a
year or so, plans were made to release it, ready or not. At a ‘‘kernel summit’’ in
June 2001 we decided to release an ‘‘early adopter’’ version at the end of the year.
In fact, FreeBSD release 5.0 was finally released—still as an ‘‘early adopter’’
version—in December 2002. The intention was that the people who use it would
report bugs and enable us to fix them before it became mainstream. FreeBSD
release 4 has not yet reached end-of-life: at the time of writing, we’re preparing to
release version 4.9, and it’s possible that a release 4.10 will follow. In a month or
two, we will release FreeBSD 5.2.

Summar y

SMPng is a work in progr ess. It’s too early to know how successful it will be.
Commercial UNIX systems have spent years refining SMP support, so it’s not fair to
criticize the current state of the system. Ther e ar e a number of possible ways that
the project could develop: it could carry on and be an absolute success, or it could
founder and eventually die from structural incompatibilities. In all likelihood, it
will be quite successful.

Acknowledgements

The FreeBSD SMPng project was made possible by BSDi’s generous donation of
code from the development version 5.0 of BSD/OS. The main contributors to the
all-important changeover were:

• John Baldwin rewr ote the low level interrupt code for i386 SMP, made much
code machine independent, worked on the WITNESS code, converted
allproc and proctree locks from lockmgr locks to sx locks, created a
mechanism in cdevsw structur e to protect thread-unsafe drivers, locked struct
proc and unified various SMP API’s such as IPI delivery.

• Jake Burkholder ported the BSD/OS locking primitives for i386, implemented
msleep(), condition variables and kernel preemption.

• Matt Dillon converted the Big Kernel spinlock to the blocking Giant lock and
added the scheduler lock and per-CPU idle processes.

• Jason Evans made malloc and friends thread-safe, converted simplelocks to
mutexes and implemented sx (shar ed/exclusive) locks.

• Gr eg Lehey implemented the heavy-weight interrupt threads, rewr ote the low
level interrupt code for i386 UP, removed spl s and ported the BSD/OS ktr
code.

• Bosko Milekic made sf_bufs thr ead-safe, cleaned up the mutex API and made
the mbuf system use condition variables instead of msleep().

• Doug Rabson ported the BSD/OS locking primitives. implemented the heavy-
weight interrupt threads and rewr ote the low level interrupt code for the Alpha
architectur e.

Further contributors were Tor Egge, Seth Kingsley, Jonathan Lemon, Mark Murray,
Chuck Paterson, Bill Paul, Alfred Perlstein, Dag-Erling Smørgrav and Peter Wemm.

Bibliography

Per Brinch Hansen, Operating System Principles. Prentice-Hall, 1973.

Marshall Kirk McKusick, Keith Bostic, Michael J. Karels, John S. Quarterman, The
Design and Implementation of the 4.4BSD Operating System, Addison-Wesley 1996.

Curt Schimmel, UNIX Systems for Modern Architectur es, Addison-Wesley 1994.

Ur esh Vahalia, UNIX Internals. Prentice-Hall, 1996.

Fur ther reference

See the FreeBSD SMP home page at http://www.Fr eeBSD.org/smg/.

References

http://www.micr osoft.com/misc/backstage/solutions.htm : ‘‘Micr osoft.com backstage:
Solutions / Best Practices’’. This URL used to contain the recommendations for the
FTP server referr ed to in the section ‘‘The problem’’. It has since been updated.

http://www.mindcraft.com/whitepapers/nts4r hlinux.html : ’’Web and File Server
Comparison: Microsoft Windows NT Server 4.0 and Red Hat Linux 5.2 Upgraded to
the Linux 2.2.2 Kernel’’ was the original Mindcraft benchmark.

http://www.mindcraft.com/whitepapers/openbench1.html : ‘‘Open Benchmark:
Windows NT Server 4.0 and Linux’’ is the second benchmark Mindcraft perfor med
on these platforms. It addr essed some criticism of the original benchmark by the
Linux community.

[USENIX 2001] http://www.lemis.com/gr og/SMPng/USENIX/index.html The paper
‘‘The FreeBSD SMPng implementation’’ presented at the USENIX summer
confer ence, Boston, 29 June 2001.

