
FreeBSD SMPng 1 Greg Lehey, 25 November 2000

From: John Baldwin <jhb@FreeBSD.org>
Date: Tue, 21 Nov 2000 13:10:15 -0800 (PST)

jhb 2000/11/21 13:10:15 PST

Modified files:
sys/kern kern_ktr.c

Log:
Ahem, fix the disclaimer portion of the copyright so it disclaim’s the
voices in my head. You can sue the voices in Bill Paul’s head all you
want.

Noticed by: jhb

Revision Changes Path
1.6 +3 -3 src/sys/kern/kern_ktr.c



FreeBSD SMPng 2 Greg Lehey, 25 November 2000

From: John Baldwin <jhb@FreeBSD.org>

On 21-Nov-00 John Baldwin wrote:
> jhb 2000/11/21 13:10:15 PST
>
> Modified files:
> sys/kern kern_ktr.c
> Log:
> Ahem, fix the disclaimer portion of the copyright so it disclaim’s the
> voices in my head. You can sue the voices in Bill Paul’s head all you
> want.
>
> Noticed by: jhb

Oh geez. That should be ’Noticed by: jlemon’. I guess the voices
are getting a bit too rambunctious.



FreeBSD SMPng 3 Greg Lehey, 25 November 2000

From: Warner Losh <imp@village.org>

In message <XFMail.001121131818.jhb@FreeBSD.org> John Baldwin writes:
: Oh geez. That should be ’Noticed by: jlemon’. I guess the voices
: are getting a bit too rambunctious.

It could be worse. You could be talking about yourself in the third
person. Warner hates it when he does that.



FreeBSD SMPng 4 Greg Lehey, 25 November 2000

From: John Baldwin <jhb@FreeBSD.ORG>

On 21-Nov-00 Warner Losh wrote:
> In message <XFMail.001121131818.jhb@FreeBSD.org> John Baldwin writes:
>: Oh geez. That should be ’Noticed by: jlemon’. I guess the voices are
>: getting
>: a bit too rambunctious.
>
> It could be worse. You could be talking about yourself in the third
> person. Warner hates it when he does that.

Well, I’m sure Warner will have a private discussion with Warner about
doing that in public.

I wonder how the voices do their locking...



FreeBSD SMPng 5 Greg Lehey, 25 November 2000

From: Warner Losh <imp@village.org>

In message <XFMail.001121133952.jhb@FreeBSD.org> John Baldwin writes:
: On 21-Nov-00 Warner Losh wrote:
: > In message <XFMail.001121131818.jhb@FreeBSD.org> John Baldwin writes:
: >: Oh geez. That should be ’Noticed by: jlemon’. I guess the voices are
: >: getting
: >: a bit too rambunctious.
: >
: > It could be worse. You could be talking about yourself in the third
: > person. Warner hates it when he does that.
:
: Well, I’m sure Warner will have a private discussion with Warner about
: doing that in public.

Warner will do that only if Warner notices.

: I wonder how the voices do their locking...

Warner Speculates that Warner’s voices don’t do locking.



FreeBSD SMPng 6 Greg Lehey, 25 November 2000

From: John Baldwin <jhb@FreeBSD.ORG>

On 21-Nov-00 Warner Losh wrote:
> In message <XFMail.001121133952.jhb@FreeBSD.org> John Baldwin writes:
>: Well, I’m sure Warner will have a private discussion with Warner about
>: doing that in public.
>
> Warner will do that only if Warner notices.
>
>: I wonder how the voices do their locking...
>
> Warner Speculates that Warner’s voices don’t do locking.

John thinJohn’s voices are too inks that the consefficient to useole driver
doesn’t ha sleep locks and endve any lock up sping yeinning a lott.
fatal double fault
eip = 0x000000
ebp = %62F k epomn e



The FreeBSD SMPng implementation

FreeBSD SMPng 7 Greg Lehey, 25 November 2000

Greg Lehey
grog@FreeBSD.org

Adelaide, 25 November 2000



Topics

FreeBSD SMPng 8 Greg Lehey, 25 November 2000

• How we got into this mess.

• Threaded interrupt handlers.

• Kinds of locks.

• Debugging.



The UNIX kernel design

FreeBSD SMPng 9 Greg Lehey, 25 November 2000

• One CPU

• Processes perform user functions.

• Interrupt handlers handle I/O.

• Interrupt handlers have priority over processes.



Processes

FreeBSD SMPng 10 Greg Lehey, 25 November 2000

• One CPU

• Processes have different priorities.

• The scheduler chooses the highest priority process which is
ready to run.

• The process can relinquish the CPU voluntarily (tsleep).

• The scheduler runs when the process finishes its time slice.

• Processes are not scheduled while running kernel code.



Interrupts

FreeBSD SMPng 11 Greg Lehey, 25 November 2000

• Interrupts cannot be delayed until kernel is inactive.

• Different synchronization: block interrupts in critical kernel
code.

• Finer grained locking: splbio for block I/O, spltty for
serial I/O, splnet for network devices, etc.



FreeBSD SMPng 12 Greg Lehey, 25 November 2000

Interrupt handler
Active

Idle

High priority process
Kernel

User

SRUN

SSLEEP

Low priority process
Kernel

User

SRUN

SSLEEP

P1 woken

P2 runs

P2 preempted
P2 runs

Ideal single processor scheduling



Problems with this approach

FreeBSD SMPng 13 Greg Lehey, 25 November 2000

Kernel synchronization is inadequate. UNIX can’t guarantee
consistency if multiple processes can run in kernel mode at the
same time.

Solution: Ensure that a process leaves kernel mode before
preempting it. Since processes do not execute kernel code for
very long, this causes only minimal problems.

Danger: If a process does stay in the kernel for an extended
period of time, it can cause significant performance
degradation or even hangs.



FreeBSD SMPng 14 Greg Lehey, 25 November 2000

Interrupt handler
Running

Active

Idle

High priority process
Kernel

User

SRUN

SSLEEP

Low priority process
splbio

Kernel

User

SRUN

SSLEEP

P1 woken

P2 runs
P2 preempted P2 runs

Real single processor scheduling



FreeBSD SMPng 15 Greg Lehey, 25 November 2000

Interrupt handler
Active

Idle

High priority process
Kernel

User

SRUN

SSLEEP

Low priority process
Kernel

User

SRUN

SSLEEP

P1 woken

P2 runs

P2 preempted
P2 runs

Ideal single processor scheduling



FreeBSD SMPng 16 Greg Lehey, 25 November 2000

Interrupt handler
Active

Idle

High priority process (CPU 0)
Kernel

User

SRUN

SSLEEP

Low priority process (CPU 1)
Kernel

User

SRUN

SSLEEP

P1 woken

Ideal dual processor scheduling



Problems with ideal view

FreeBSD SMPng 17 Greg Lehey, 25 November 2000

• Can’t hav e more than one process running in kernel mode.

• ‘‘Solution’’: introduce Big Kernel Lock. Spin (loop) waiting
for this lock if it’s taken.

• Disadvantage: much CPU time may be lost.



FreeBSD SMPng 18 Greg Lehey, 25 November 2000

Interrupt handler
Active

Idle

High priority process (CPU 0)
Kernel

User

SPIN

SRUN

SSLEEP

Low priority process (CPU 1)
Kernel

User

SPIN

SRUN

SSLEEP

P1 woken

Real dual processor scheduling



FreeBSD SMPng 19 Greg Lehey, 25 November 2000

Process in CPU 0
Kernel

User

SPIN

Process in CPU 1
Kernel

User

SPIN

Process in CPU 2
Kernel

User

SPIN

Process in CPU 3
Kernel

User

SPIN

Extreme quad processor scheduling: ideal



FreeBSD SMPng 20 Greg Lehey, 25 November 2000

Process in CPU 0
Kernel

User

SPIN

Process in CPU 1
Kernel

User

SPIN

Process in CPU 2
Kernel

User

SPIN

Process in CPU 3
Kernel

User

SPIN

Extreme quad processor scheduling: real



Limiting the delays

FreeBSD SMPng 21 Greg Lehey, 25 November 2000

• Create ‘‘fine-grained’’ locking: lock only small parts of the
kernel.

• If resource is not available, block, don’t spin.

• Problem: interrupt handlers can’t block.

• Solution: let them block, then.



Blocking interrupt handlers

FreeBSD SMPng 22 Greg Lehey, 25 November 2000

• Interrupt handlers get a process context.

• Short term: normal processes, involve scheduler overhead on
ev ery invocation.

• Longer term: ‘‘light weight interrupt threads’’, scheduled
only when conflicts occur.

• Choice dictated by stability requirements during changeover.

• Resurrect the idle process, which gives a process context to
each interrupt process.



Blocking interrupt handlers

FreeBSD SMPng 23 Greg Lehey, 25 November 2000

USER PID %CPU %MEM VSZ RSS TT STAT STARTED TIME COMMAND
root 10 49.6 0.0 0 0 ?? RL 2:10PM 5:45.35 (idle: cpu1)
root 11 48.4 0.0 0 0 ?? WL 2:10PM 5:45.34 (idle: cpu0)
root 12 0.0 0.0 0 0 ?? WL 2:10PM 0:01.09 (softinterrupt)
root 13 0.0 0.0 0 0 ?? WL 2:10PM 0:00.00 (irq14: ata0)
root 14 0.0 0.0 0 0 ?? WL 2:10PM 0:00.00 (irq15: ata1)
root 15 0.0 0.0 0 0 ?? WL 2:10PM 0:00.05 (irq3: dc0)
root 16 0.0 0.0 0 0 ?? WL 2:10PM 0:00.05 (irq10: ahc0)
root 17 0.0 0.0 0 0 ?? WL 2:10PM 0:00.00 (irq11: atapci1+)
root 18 0.0 0.0 0 0 ?? WL 2:10PM 0:00.01 (irq1: atkbd0)
root 19 0.0 0.0 0 0 ?? WL 2:10PM 0:00.00 (irq12: psm0)
root 20 0.0 0.0 0 0 ?? WL 2:10PM 0:00.00 (irq7: ppc0)
root 21 0.0 0.0 0 0 ?? WL 2:10PM 0:01.44 (irq0: clk)
root 22 0.0 0.0 0 0 ?? WL 2:10PM 0:01.36 (irq8: rtc)



Types of locking constructs

FreeBSD SMPng 24 Greg Lehey, 25 November 2000

• Semaphores.

• Spin locks.

• Adaptive locks.

• Blocking locks.

• Condition variables.

• Read-write locks.

Locking constructs are also called mutexes .



Semaphores

FreeBSD SMPng 25 Greg Lehey, 25 November 2000

• Oldest synchronization primitive.

• Include a count variable which defines how many processes
may access the resource in parallel.

• No concept of ownership.

• The process that releases a semaphore may not be the
process which last acquired it.

• Waiting is done by blocking (scheduling).

• Traditionally used for synchronization between processes.



Spin locks

FreeBSD SMPng 26 Greg Lehey, 25 November 2000

• Controls a single resource: only one process may own it.

• ‘‘busy wait’’ when lock is not available.

• May be of use where the delay is short (less than the
overhead to run the scheduler).

• Can be very wasteful for longer delays.

• The only primitive that can be used if there is no process
context (traditional interrupt handlers).

• May have an owner, which is useful for consistency
checking and debugging.



Blocking lock

FreeBSD SMPng 27 Greg Lehey, 25 November 2000

• Controls a single resource: only one process may own it.

• Runs the scheduler when lock is not available.

• Generally usable where process context is available.

• May be less efficient than spin locks where the delay is short
(less than the overhead to run the scheduler).

• Can only be used if there is a process context.

• May have an owner, which is useful for consistency
checking and debugging.



Adaptive lock

FreeBSD SMPng 28 Greg Lehey, 25 November 2000

• Combination of spin lock and blocking lock.

• When lock is not available, spin for a period of time, then
block if still not available.

• Can only be used if there is a process context.

• May have an owner, which is useful for consistency
checking and debugging.



Condition variable

FreeBSD SMPng 29 Greg Lehey, 25 November 2000

• Tests an external condition, blocks if it is not met.

• When the condition is met, all processes sleeping on the wait
queue are woken.

• Similar to tsleep /wakeup synchronization.



Read-write lock

FreeBSD SMPng 30 Greg Lehey, 25 November 2000

• Allows multiple readers or alternatively one writer.



Comparing locks

FreeBSD SMPng 31 Greg Lehey, 25 November 2000

Lock Multiple owner requires
type resources context

Semaphore yes no yes
Spin lock no yes no
Blocking lock no yes yes
Adaptive lock no yes yes
Condition variable yes no yes
Read-write lock yes no yes



Recursion

FreeBSD SMPng 32 Greg Lehey, 25 November 2000

• What do we do if a process tries to take a mutex it already
has?

• Could be indicative of poor code structure.

• In the short term, it’s very likely.

• Solaris does not allow recursion, and this has caused many
problems.

• Currently FreeBSD allows recursion. Discussion is still
intense.



FreeBSD mutex

FreeBSD SMPng 33 Greg Lehey, 25 November 2000

struct mtx {
volatile u_int mtx_lock; /* lock owner/gate/flags */
volatile u_short mtx_recurse; /* number of recursive holds */
u_short mtx_f1; /* flags */
u_int mtx_savefl; /* saved flags (for spin locks) */
char *mtx_description; /* name */
TAILQ_HEAD(, proc) mtx_blocked; /* list of waiters */
LIST_ENTRY(mtx) mtx_contested;
struct mtx *mtx_next; /* all locks in system */
struct mtx *mtx_prev;

};



mutex forms

FreeBSD SMPng 34 Greg Lehey, 25 November 2000

• Described in mutex(9)

• Adaptive lock: Set flag MTX_DEF (default).

• Spin lock: Set flag MTX_SPIN.

• Sleep lock: Set flags MTX_DEF and MTX_NOSPIN.

• Many flag definitions taken from BSD/OS are currently
unused.

• Currently no semaphores or read/write locks.



Condition variables

FreeBSD SMPng 35 Greg Lehey, 25 November 2000

• Currently no prototypical condition variables.

• Same functionality available from the msleep function:
enter holding a mutex.

• The mutex will be released before sleeping and reacquired
on wakeup.

• Similar to the behaviour of tsleep with splx functions.

• tsleep reimplemented as a macro calling msleep with
null mutex.



Original locks

FreeBSD SMPng 36 Greg Lehey, 25 November 2000

• Giant: protects the kernel.

• sched_lock: protects the scheduler.



Current locks

FreeBSD SMPng 37 Greg Lehey, 25 November 2000

• clock_lock protects low-level time manipulation
routines.

• random_reseed, random_harvest. Both used by the
kernel random number generator.

• vm86pcb_lock

• malloc_mutex

• w_mtx

• eventhandler_mutex

• mmbfree.m_mtx

• mclfree.m_mtx

• mcntfree.m_mtx

• buftimelock

• mountlist_mtx



Debugging

FreeBSD SMPng 38 Greg Lehey, 25 November 2000

• Based on BSD/OS work.

• ktr maintains a kernel trace buffer.

• witness code debugs mutex use.



ktr

FreeBSD SMPng 39 Greg Lehey, 25 November 2000

• Traces programmer-specified events.

• Multiple classes, e.g.

#define KTR_GEN 0x00000001 /* General (TR) */
#define KTR_NET 0x00000002 /* Network */
#define KTR_DEV 0x00000004 /* Device driver */
#define KTR_LOCK 0x00000008 /* MP locking */
#define KTR_SMP 0x00000010 /* MP general */
#define KTR_FS 0x00000020 /* Filesystem */

• Code only generated if class bit is set in kernel option
KTR_COMPILE.

• Code only executed if class bit is set in variable ktr_mask,
initially set from kernel option KTR_MASK.



ktr (continued)

FreeBSD SMPng 40 Greg Lehey, 25 November 2000

• Stores trace information in fixed-size entries in a circular
buffer.

• Low overhead trace stores pointers to format strings and
decodes them via tdump(8).

• tdump(8) has not yet been ported to FreeBSD.

• High-overhead trace enabled with kernel option
KTR_EXTEND.

• Trace entries include complete formatted data.

• Suitable for use during intensive debug.

• Orders of magnitude slower than default ‘‘low-overhead’’
trace.



ktr (continued)

FreeBSD SMPng 41 Greg Lehey, 25 November 2000

Sample call (i386/isa/ithread.c ):

void
sched_ithd(void *cookie)
...

CTR3(KTR_INTR, "sched_ithd pid %d(%s) need=%d",
ir->it_proc->p_pid, ir->it_proc->p_comm, ir->it_need);

...
CTR1(KTR_INTR, "sched_ithd: setrunqueue %d",

ir->it_proc->p_pid);
...
void
ithd_loop(void *dummy)

...
CTR3(KTR_INTR, "ithd_loop pid %d(%s) need=%d",

me->it_proc->p_pid, me->it_proc->p_comm, me->it_need);
...



Sample ktr output

FreeBSD SMPng 42 Greg Lehey, 25 November 2000

138 0:034559493 cpu0 machine/mutex.h.510
REL sched lock [0xfffffc00006662d0] at ../../kern/kern_synch.c:813 r=0

137 0:034508805 cpu0 machine/mutex.h.471
GOT sched lock [0xfffffc00006662d0] at ../../kern/kern_synch.c:785 r=0

136 0:032610555 cpu0 machine/mutex.h.471
GOT Giant [0xfffffc00006664a0] at ../../kern/kern_synch.c:958 r=0

135 0:032560177 cpu0 machine/mutex.h.510
REL Giant [0xfffffc00006664a0] at ../../alpha/alpha/interrupt.c:123 r=0

134 0:032509499 cpu0 machine/mutex.h.471
GOT Giant [0xfffffc00006664a0] at ../../alpha/alpha/interrupt.c:121 r=0

133 0:032504810 cpu0 ../../alpha/alpha/interrupt.c.115
clock interrupt

132 0:032450423 cpu0 machine/mutex.h.510
REL sched lock [0xfffffc00006662d0] at ../../kern/kern_synch.c:956 r=1



Debugger extensions

FreeBSD SMPng 43 Greg Lehey, 25 November 2000

• FreeBSD has a different kernel debugger from BSD/OS, no
import of functionality.

• Macros for gdb : Display ktr information.



The way ahead

FreeBSD SMPng 44 Greg Lehey, 25 November 2000

• Gradually weaken Giant.

• Convert interrupt handlers to use mutexes.

• Maintain discipline: we can expect chaos as Giant loses
its strength.

• Particular challenge for an ‘‘Open Source’’ project.



Further information

FreeBSD SMPng 45 Greg Lehey, 25 November 2000

http://www.FreeBSD.org/smp/

These slides are available at
http://echunga.linuxcare.com.au/SMPng/


