
‘‘Tw o years in the trenches’’
Evolution of a free software project

Greg Lehey
President, AUUG Inc.

Greg.Lehey@auug.org.au
Member, FreeBSD Core team
grog@FreeBSD.org

ABSTRACT

Free software projects have been around for over ten years now, and they’ve become an
important part of the UNIX community. With the example of the FreeBSD project, this
paper illustrates some of the changes that have occurred in that time and attempts to guess
what the future may bring.

The three ages of UNIX
UNIX® is now a third of a century old. In this
time, the face of computing has changed dramati-
cally. It’s interesting to consider the evolution of
UNIX in three phases of roughly 11 years each:

• From 1969 until about 1980, UNIX was
mainly a research project, little known outside
AT&T except at some universities.

• From 1980 until about 1991, UNIX developed
into a commercial operating system with re-
leases like UNIX System V (remember that?),
XENIX, SunOS, Ultrix and friends.

• In the early 90s, efforts at the University of
California in Berkeley to produce free UNIX
came to fruition. At pretty much exactly the
same time, the Linux project started. UNIX
was on the way to becoming free.

This paper looks at the last third of this history in
more detail.

The evolution of free UNIX
Free software has been around for ever. Until the
end of the 60s, coincidentally the time when
UNIX evolved, software was almost always free.
And why not? Most system software came with
the machines and would only run on them, so
there was little incentive to charge separately for
the software. Applications software was tuned to
specific applications, so piracy was hardly worth
worrying about.

By the end of the 1960s, that had changed. IBM
was faced with competitors who built hardware
which was strikingly compatible with the Sys-
tem/360, and IBM’s software ran on it. It started
to make commercial sense for IBM to unbundle
its software. Over the course of the following ten
years, more and more compatible hardware be-
came available, and by 1980 just about all soft-
ware cost money. Vendors had a perception that
access to the source code would give their com-
petitors an advantage, so they restricted availabili-
ty of their software to object form only. The re-
sultant inflexibility was one of the reasons which
led to the formation of the Free Software Founda-
tion in the mid-80s.

To wards the end of the 70s, the price of ‘‘real’’

computers dropped to the point where individuals
could own them. People started sharing programs
for their CP/M based machines, and later for their
Microsoft-based replacements. Most software for
small machines continued to cost money, howev-
er, and the machines themselves were too small to
run UNIX effectively.

This changed round about 1990 with the availabil-
ity of machines based on the Intel 80386 proces-
sor. At the same time, individual access to the In-
ternet became easier, especially for students.
These were the background for a number of free
software projects which were initially completely
independent of the Free Software Foundation and
its values.

The early 90s
Computer hackers1 have been around as long as
computers. They hav e probably dreamed of hav-
ing their own computer that long, too, but it really
only became even remotely possible in the
mid-1970s. People started working on UNIX-like
systems early:

• In the late 1970s, a company called Electro-
labs started working on a UNIX-like system
called OS-2, intended to run on the Z-80 pro-
cessor. It nev er passed the beta stage running
under CP/M.

• In the early 1980s, Mark Williams Company
ported their Coherent system, a clone of the
UNIX Seventh edition, to the IBM PC. With-
out memory protection, and with the memory
limitations of the original success, it was not a
great success.

• Andy Tanenbaum’s Minix operating system
ran on a number of processors, including the
Intel 8086 family.

None of these projects became very large. The
hardware wasn’t up to it, and none of them made
the source code freely available, though the re-
strictions on Minix were relatively minor. Two
things changed that situation in the late 1980s and
early 1990s:

1. A hacker is, of course, somebody who can’t tell the
difference between work and play with computers. See the
New Hacker’s Dictionary
(http://www.tuxedo.org/˜esr/jargon/html/entry/hacker.html)
for more details.

• The release of the Intel 80386 processor and
systems based on it, gav e the average hacker
an affordable machine with virtual memory,
capable of running modern UNIX without
significant compromises.

• Improved access to the Internet, especially for
students, made cooperation on software pro-
jects more practicable.

In those days, for most people the attraction was
the challenge of running UNIX on one’s own
computer, not any commercial intent. Indeed,
Bill Jolitz staunchly refused to commercialize his
386BSD operating system, and in August 1991,
Linus Torvalds wrote in the original announce-
ment of Linux ‘‘just a hobby, won’t be big and
professional like gnu’’.

I don’t believe that religious belief in ‘‘free soft-
ware’’ was a big thing at the time. The GNU pro-
ject had been around for a while, and both 386
BSD and Linux took advantage of the software,
but initially there was little synergy between the
GNU project and the free OS projects.

During this period, relatively few people con-
tributed to the projects. For example, the release
notes of FreeBSD 2.0, released in January 1995,
mention a total of 55 contributors, including a 15
member core team, who really were the project.
Most of the other contributors had only loose
links with the FreeBSD project.

The compromise OS
Along with the free operating system projects
there was also a ‘‘reasonable’’ operating system
project, BSD/386 from Berkeley Software Design
Inc., or BSDI (later BSDi). BSD/386 was derived
from the same code base as 386BSD, and was in
fact quite closely related. The story of that rela-
tionship is interesting enough to be the topic for
another paper. The difference was that BSD/386
cost money. Including complete source code, it
cost $1,000 US. That may seem to be a lot of
money, but in those days source licenses for Sys-
tem V cost at least $50,000, and a BSD/386
source license was was cheaper than a binary li-
cense for the System V implementations for the
Intel platform. In addition, it was complete—no
dozens of additional packages to add, each with
their own activation key. Even more surprisingly,
BSD/386 was more reliable than System V.

The mid-90s
In the early days, nobody had very great expecta-
tions for the free operating systems. They didn’t
expect them to be as reliable as UNIX® System
V. They didn’t even expect them to be as reliable
as Microsoft’s offerings, though they did expect
them to be easier to use.

In a few years, something happened that nobody
had expected. Well, very few people: the operat-
ing systems did become as reliable as Microsoft’s
offerings, quite quickly in fact. One of the first
results of this recognition came from the massive
increase in Internet usage, which created a re-
quirement for low-cost web servers. This was the
reason for the foundation of BSDI, who branded
their operating system ‘‘Internet Server’’, later
‘‘Internet Super Server’’. Initially they were very
successful. As time went on, though, enterprising
startups realized that they could save the cost of
the software by using free operating systems in-
stead of BSD/386. Thus in 1995, when Yahoo!
started up, it was based on FreeBSD.

Linux was slower to reach reliability than the
BSD systems: it had to be written from scratch,
whereas the free BSD systems were based on a
code base at least ten years old, including the
most mature of TCP/IP stacks.

By the late 1990s, though, Linux had effectively
caught up with the BSDs, and depending on
which bigot you ask, either overtook the BSDs or
never quite made it.

In the mid-1990s, another thing happened: the
general public became aware of the concept of
free operating systems. They were still consid-
ered very much the realm of geeks, but they were
becoming known.

During this time, more and more people became
involved with the projects.

The late 90s
By the end of the 1990s, free software was well
enough known in the IT industry for some people
to form companies to market it. The result was a
further increase in the size of the projects. At the
time of writing, the FreeBSD project has 318
committers, in other words developers with write
access to the source tree, probably ten times the
number as of January 1995.

Social changes
Clearly the social structure of the FreeBSD pro-
ject has changed greatly in its nature in the last
ten years. By mid-2000, the strain was beginning
to show:

• The core team was no longer the group of the
most active comitters. Their function had ef-
fectively become more administrative, but
they hadn’t recognized the fact yet.

• The architectural direction of the project had
become a little vague. The position of chief
architect, previously held by David Green-
man, had been vacant for some time. In the
early stages of the project, most of the work
in the project had been to make FreeBSD a
stable UNIX-like operating system, but that
goal had now been achieved. There was more
work to do, but the only clearly defined goal
was to improve the SMP performance—the
SMPng project, which at the time had just
started, and which is still continuing.

• A related problem was the attractiveness to
end users. Like other free operating systems,
FreeBSD has always been a developer-driven
project, but the main source of project fund-
ing came from selling CD-ROMs. The sales
of the CD-ROMs were obviously dependent
on the perception of the purchaser, but no-
body in the project was overly concerned with
this issue.

• Some developers exploited the ineffectiveness
of the core team by doing whatever they
wanted. This notably included making
changes to the system to match their view of
what was needed, possibly breaking parts of
the system (those parts which they didn’t
use), and leaving it to others to clean up.

• This in turn, along with an observed inability
on the part of the core team to solve the prob-
lem, caused a serious decline in the morale of
the project, and a number of people left the
project as a result.

• One of the most noticeable rogue developers
was a member of the core team. As a result,
the lack of activity of the core team was per-
ceived as cronyism.

• The core team had adopted a policy of not
communicating the reasons behind its deci-
sions, partly to hide the fact that many mem-
bers were inactive, and partly to avoid spark-
ing conflicts. Not surprisingly, this gav e them
a reputation for secrecy.

In November 1999, Nate Williams asked in a mail
message:

Finally, what is the purpose of core? I used to
know, but I’m not sure anymore. What determines
if someone should become a core member? Is
there any way to lose your core member status, in
the same manner that you can lose the ability to
be considered a maintainer? Do you have to quit
in order to not become a core member? (So far
that’s the case).

My *biggest* fear is that we will lose active de-
velopers simply because we just plod along hop-
ing that everything will work out, and hope that
someone will pick up the torch from time to time
and take us in some sort of good direction.

Lah-de-dah, lah-de-dah. Once upon a time, core
members were folks were *really* excited and
highly motivated to work on this thing, and would
spend nights/weekends and all sorts of time on
this. But, core is now older, and our real lives get
in the way now.

A couple of people suggested various ways to re-
form or change the core team, including the possi-
bility of disbanding core altogether and becoming
an anarchy, or voting for the core team. A num-
ber of people came up with remarkably compli-
cated voting models. Finally, Jordan Hubbard
came up with a suggestion and asked the develop-
ers to vote on a number of alternatives. Out of 94
votes cast, the most popular were:

• The idea of core is fine, its membership sim-
ply needs a shake-up and some mechanism
added for voting in new blood. This alterna-
tive received 58 votes.

• The idea of core is fine, but some of members
simply need to leave. This received 12 votes,
most of which identified a single specific
member.

• Core needs to be broken up into an over-
sight/human resources group, leaving archi-
tectural decisions to developers. This alterna-
tive received 9 votes.

• Don’t change anything, core is fine the way it
is. Received 7 votes

• Disband core entirely and let committers cre-
ate a new structure in its place. Received 7
votes

Clearly the majority was for a democratically
elected core team. More discussions ensued.
Some people were concerned that politics would
take over from reason, and the people who would
get elected would be those who could drum up
enough followers, not those who could do the best
jobs. A team of volunteers, consisting of
Jonathan Lemon, Warner Losh and Wes Peters,
got together and thrashed out the existing voting
models and came up with the following proposal,
on which we also voted:

• Active committers have made a commit to the
tree in the last 12 months.

• Core consists of 9 elected active committers.

• Core elections are held every 2 years, first
time September 2000.

• Core members and committers may be ejected
by a 2/3 vote of core.

• If the size of core falls below 7, an early elec-
tion is held.

• A petition of 1/3 of active committers can
trigger an early election.

• Elections will be run as follows:
Core appoints and announces someone to

run the election.
1 week to tally active committers wishing to

run for core.
4 weeks for the actual vote
1 week to tally and post the results.
Each active committer may vote once in

support of up to nine nominees.
New core team becomes effective 1 week

after the results are posted.
Voting ties decided by unambiguously elect-

ed new core members.

• These rules can be changed by a 2/3 majority
of committers if at least 50%
of active committers cast their vote.

These ‘‘bylaws’’ passed by 117 yes votes to 5 no
votes, thus also disproving the concern that com-
mitters wouldn’t be interested enough to vote for
the core team.

A couple of these provisions look a little unusual:

• The rationale behind the surprisingly long
election period was that, since this is a volun-
teer project, many people might miss a shorter
election period, especially Europeans on mul-
ti-week leave.

• We spent a lot of time discussing how to vote.
We were concerned that if each voter had only
one vote, the majority would vote for the
same two or three candidates, effectively leav-
ing the remainder to chance. Even worse, it
could lead to less than 9 candidates being vot-
ed for at all. Initially, we also discussed a
‘‘veto’’ vote: ‘‘Don’t let <that bloke> onto
core’’. You’ll note from Jordan’s poll that the
second most popular model was ‘‘expel <that
bloke> from core’’. Neither of these sugges-
tions were accepted.

The election
Nominations for candidacy were accepted be-
tween 5 September 2000 and 12 September 2000,
after which the election started immediately. It
finished on 10 October 2000. The results were
announced on 12 October 2000, just in time for
the beginning of BSDCon 2000
(http://www.bsdcon.com).

A total of 17 candidates registered, surprisingly
close to the size of the previous core team. Only
8 of the previous core team stood for election.
Campaigning was almost non-existent.

The morning after
The members of the new team, later to be dubbed
core.2, were:

• Satoshi Asami, member of the old core team.
Guardian of the Ports Collection Japanese.

• David Greenman, one of the founders of the
FreeBSD project, and member of the old core
team. Kernel hacker and former principal ar-
chitect of the FreeBSD project. American.

• Jordan Hubbard, one of the founders of the
FreeBSD project, and member of the old core
team. Release engineer and former president
of the FreeBSD project, a position which he
had dropped some time before. American.

• Greg Lehey, newly elected. Kernel hacker,
author of the Vinum Volume manager. Aus-
tralian (Adelaide).

• Warner Losh, newly elected. Network hacker.
American.

• Doug Rabson, member of the old core team.
Kernel hacker, responsible for the port of
FreeBSD to the Alpha platform. British.

• Mike Smith, newly elected. Low-level kernel
hacker. Australian (Adelaide).

• Robert Watson, newly elected. Network
hacker, FreeBSD security officer. British.

• Peter Wemm, member of the old core team.
Universal Kernel Hacker. Australian (Perth).

In summary, the new team included five members
from the old core team. Tw o candidates from the
old core team were not re-elected. The composi-
tion of the team changed in other ways: five mem-
bers of the old core team had a non-English native
language, but only one member of the new team
did. Seven members of the old core team lived
outside the USA, only two of the new team did.
Three members of the new core team were Aus-
tralians, including myself, compared to two be-
fore.

One thing that all members had in common was
that they were software developers, not managers.
This is not surprising, given the mode of election.
I had had some management experience years be-
fore, but I believe that I was the only one, and my
experience wasn’t much to write home about.

Into the trenches
The new core team took office at a panel discus-
sion during BSDCon 2000. We had a completely
new concept ahead of us, and we certainly
weren’t sure how to fulfil our objectives. Worse,
we didn’t even know what our objectives were.
An association like AUUG has a constitution.
The best we had in the FreeBSD project were the
‘‘bylaws’’, originally intended to define the
modality of the elections.

The first meeting
The second FreeBSD core team had a meeting at
the end of the BSDCon in Monterey. It was, in
fact, a significant event: in the course of the histo-
ry of the FreeBSD project, it was the only meet-
ing of the entire core team. Previously, an attempt
to pay to bring the core team together (at the
FreeBSDCon in Berkeley, the year before) had
failed thanks to the efforts of the US Immigration

Department: Andrey Chernov, who lives in Rus-
sia, was deemed unsuitable for entry to the USA.

In this meeting, we tried to define what the pur-
pose of the FreeBSD core team was. We discov-
ered a surprising number of differences of opin-
ion, but we finally decided:

• The FreeBSD core team does not define the
architectural direction of the project.

• There will be no officers on the core team.
Jordan Hubbard had suggested to take the role
of spokesman, but the consensus was that
people already saw him as exercising too
much control on the team, and we suspected
this would send the wrong message.

• The FreeBSD project is a volunteer organiza-
tion, so the core team does not have a man-
date to tell anybody to do anything.

That’s conceding a lot. So what was left?

• The core team decides who can join the pro-
ject as a ‘‘committer’’, somebody with com-
mit access to the CVS tree. On request,
backed by a mentor, who must already be a
committer, the core team decides whether to
admit him to the project (to ‘‘give him a com-
mit bit’’). Core voted on each application. A
single ‘‘no’’ was sufficient to veto an applica-
tion, and voting terminated after a week.

• In case of extreme misbehaviour, the core
team can expel a committer from the project.

• In case of dispute between two committers,
the core team mediates.

A little later we added the concept of a monthly
core team report to address the accusations of se-
crecy made against the previous core team.

Comparing this list with the problems facing the
project, a number of issues remained unanswered:

• We still had no architectural direction. The
core team’s intention here was that a consen-
sus should be formed on the FreeBSD-
arch mailing list. If no consensus could be
formed, core would mediate.

• Attractiveness to end users. The majority of
the members of the core team, being develop-
ers themselves, were not very interested in
this aspect.

• Rogue developers. We couldn’t agree on how
to handle this one. One of the issues that was
made very clear was that the core team did
not have a ‘‘big stick’’. About the only thing
that it could do would be to expel a member
from the project.

• Project morale. This included behaviour of
developers towards each other. Again, core
did not come up with a good solution for this
problem, though theoretically expulsion from
the project would have been a solution.

Acceptance of core.2
How did we go? Parts of it were excellent.

The biggest problem we found was that core
members were still unresponsive. Applications
for commit bits, our main activity, took up to sev-
eral months to process instead of the one-week
timeout we had set ourselves. One of the prob-
lems was the amorphous structure of core: no-
body had a particular hat, so there was nobody
designated to actually convey the message back to
the applicants. In the course of time, that got bet-
ter. Very few applications were rejected.

Publishing the monthly core reports became very
slow. Although the reports for the last months of
2000 were relatively timely, the January 2001 re-
port was released on 29 June 2001. We beg an to
recognize that we needed help, and solicited ap-
plications for the position of core secretary, a non-
voting position more akin to AUUG’s business
manager than to the secretary. Initially we let
several applicants work on the backed-up reports.
The February 2001 report appeared in November
2001, and gradually we caught up with the back-
log. We signed up Wilko Bulte as core secretary,
a position he still holds, and by May 2002 we had
cleared up the backlog.

Rogue developers
Not surprisingly, problems with rogue developers
did not abate. Each occurrence caused a lot of an-
gry discussion with core, which was very wearing
on a number of the members. Surprisingly, it also
became apparent that many core members saw
each occurrence as a separate issue, and personal
likes and dislikes were very evident. There was
strong resistance to any general policy.

In February 2002, a developer announced his in-
tention to commit some significant changes to the

SMP code. At the time, the most active SMP de-
veloper, John Baldwin, was moving house from
one coast of the US to the other, and was thus of-
fline. Others who were involved pointed out that
these changes were in conflict with changes that
John was currently testing and asked the develop-
er to hold off. The developer committed the
changes anyway.

The handling of this particular issue became a test
of core’s authority. For the first time, core decid-
ed to revoke the developer’s commit privileges if
he did not back out the commits. He did so in the
nick of time (without knowing about the impend-
ing suspension), and asked core to resolve the is-
sue. The resolution was hard, and it looked more
like tactics rather than strategy. After a month of
discussion involving hundreds of mail messages,
core appointed John Baldwin to the position of
technical lead for the SMP project, with the pow-
er to approve or reject changes.

Based on this relative success, core deliberated
and came up with some rules about developer be-
haviour:

1. Any committer who commits to the stable
branch during a code freeze will have his or
her commit bit suspended for 2 days. Any
member of core or the re@ team can imple-
ment the suspension without the need for a
formal vote within core or re@ respectively.
The suspension will be published on -devel-
opers.

2. Any committer who commits to the security
branch without approval from the security-
officer team will have his or her commit bit
suspended for 2 days. Any member of core
or the security-officer@ team can imple-
ment the suspension without the need for a
formal vote within core or security-offi-
cer@ respectively. The suspension will be
published on -developers.

3. When committers engage in a commit war,
both parties will have their commit bits sus-
pended for 5 days. Any member of core can
do this without the need for a formal vote.
The suspension will be published on -devel-
opers.

4. Any committer observed to act or speak in
a way that is in conflict with the normal
rules of interpersonal politeness, or in con-
flict with the best interests of the FreeBSD
Project will have his or her commit bit sus-

pended for 5 days. Any member of core can
implement the suspension without the need
for a formal vote within core. The suspen-
sion will be published on -developers.

5. Core reserves the right to impose harsher
penalties for repeat offenders. Harsher
penalties include longer suspension terms
and the permanent removal of commit priv-
ileges and FreeBSD.org accounts. Imple-
menting harsher penalties are subject to a
formal 2/3 majority vote in core. The out-
come of core’s decision will be published
on -developers.

In all cases where an individual FreeBSD officer
takes a personal action he or she will be answer-
able to core. All cases can be taken for appeal to
the core team. The outcome of such an appeal will
be published on -developers and in the core
monthly report.

These rules looked rather rigid, but we couldn’t
come to an agreement to moderate them, so that’s
the way they remain.

The big stick
In June, core received a formal complaint about
the same committer who had caused us so much
grief in February. He had committed code in an
area on which another developer was working,
without discussing the matter with him. This had
annoyed the other developer to the point that he
relinquished the maintainership of this part of the
tree.

We discussed the matter and attempted to decide
whether this behaviour was in conflict with the
rules we had just published, specifically rule 4. A
majority decided that it was, but there were exten-
uating circumstances. According to the rules,
though, we still had to impose the full five day
penalty.

The developers reacted in different ways, mainly
unfavourably. In the meantime, as described the
next section, we were in an election campaign.
Some suspected that this punishment was politi-
cally motivated, since the developer in question
was also an election candidate. It’s not clear,
however, whether this punishment improved or
lessened his chances, but in any case he wasn’t
elected. The core team decided on a reprieve af-
ter two days, and the matter died down relatively
quickly.

A few weeks later, two other highly respected
committers engaged in a commit war: one com-
mitted something that the other didn’t like, the
other backed it out, the first recommitted it, and
so on—a clear violation of rule 3. As always,
there were extenuating circumstances. After
some deliberation, core decided to suspend the
commit bits for 24 hours. Again, this caused a
commotion in the mailing lists, but it died down
more quickly.

Is this working? It seems to. Core needs to un-
derstand how to dose the punishment, but the real
issue here is not the temporary loss of commit
privileges, it’s the open recognition of inappropri-
ate behaviour. It’s still too soon to be certain, but
maybe people are being more considerate as a re-
sult.

The collapse of core.2
Round May 2001, Satoshi Asami became sick
and disappeared from the scene for some time.
Even after his return, he did not participate in core
discussions, and after several months, we finally
decided that he was de facto no longer a member
of the core team. According to the ‘‘bylaws’’, we
carried on with only eight members.

After the SMP commit war described above, peo-
ple were feeling tired. Everything seemed to take
more effort than necessary. On 29 April 2002,
Jordan Hubbard dropped a bombshell: he re-
signed from core. In his resignation message, he
stated:

... being in core is honestly not what it once was.
For an old-timer like myself, who was used to a
core team that was far more cohesive and gener-
ally on the same page, it’s simply a painful expe-
rience a lot of the time. Perhaps this is due to
overly rose-colored recollections of the old core
on my part, and I do certainly recall us having
more than our share of disagreement and ineffi-
ciency in the past, but on the balance core still
feels too much like the pre-WWII Polish Parliment
sometimes, where we’re fully capable of arguing
some issue right up to the point where tanks are
rolling through the front door and rendering the
whole debate somewhat moot. I’m also not blam-
ing this on the democratic model we’ve adopted,
a stance which would be hypocritical at best since
I’m one of the folks who argued strongly in favor
of it, but I guess it’s going to take a few more iter-
ations before we get it right. It will also probably
be a lot easier for truly new people who don’t

have a lot of preconceived notions of what core is
to make that happen.

Finally, it also bears noting that while being part
of the FreeBSD project is many things, it should
always be "fun" to at least some degree for its
participants or there’s really not much point in
being involved. Being in core, where one gets to
deal almost solely with conflict resolution and bu-
reaucracy, is not fun in any sense of the word and
while being in core constitutes the bulk of my in-
volvement, without any cool development work
(which I also haven’t had time for) to counter-bal-
ance it, it simply leaves me with less and less en-
thusiasm for FreeBSD.

Yes, it certainly wasn’t fun. Slashdot picked it up
with glee, of course, and the usual ‘‘FreeBSD is
dying’’ trolls came out again. That’s not the
point, of course. This has nothing to do with
FreeBSD as an operating system, these are simply
some interesting project dynamics.

As if that wasn’t interesting enough, five days lat-
er Mike Smith also resigned from core. In his
message, he wrote:

Fr eeBSD used to be fun. It used to be about do-
ing things the right way. It used to be something
that you could sink your teeth into when the mun-
dane chores of programming for a living got you
down. It was something cool and exciting; a way
to spend your spare time on an endeavour you
loved that was at the same time wholesome and
worthwhile.

It’s not anymore. It’s about bylaws and commit-
tees and reports and milestones, telling others
what to do and doing what you’re told. It’s about
who can rant the longest or shout the loudest or
mislead the most people into a bloc in order to le-
gitimise doing what they think is best. Individuals
notwithstanding, the project as a whole has lost
track of where it’s going, and has instead become
obsessed with process and mechanics.
...
Fr om a technical perspective, the project faces a
set of challenges that significantly outstrip our
ability to deliver. Some of the resources that we
need to address these challenges are tied up in the
fruitless metadiscussions that have raged since we
made the mistake of electing officers. Others have
left in disgust, or been driven out by the culture of
abuse and distraction that has grown up since
then. More may well remain available to recruit-
ment, but while the project is busy infighting our

chances for successful outreach are sorely dimin-
ished.

Does this look familiar? It should do to anybody
in commercial software development projects.
Coincidentally, both Mike and Jordan work for
Apple. They must be involved in project planning
there; it’s to be expected that it works better at
Apple.

core.3
After Mike Smith’s resignation, core only had six
members left. According to the ‘‘bylaws’’, this
meant that elections had to be held. That, too,
caused long discussions. When, how quickly,
should we change the ‘‘bylaws’’ first? We did a
straw poll which showed that the committers did
not want to wait, and they didn’t want to change
the bylaws. An election schedule was published
in accordance with the ‘‘bylaws’’, and then people
decided there wasn’t enough time for people to
declare their candidacy. Accordingly, the period
for nominations was extended, and voting ran
from 29 May to 25 June.

Despite the perceived tiredness, a record number
of nominations were received. In contrast with
the first core elections, there was a significant
amount of politicking, with some candidates pub-
lishing lists of their preferred partners in core.

The results were announced, not as planned on 1
July, but immediately after the elections closed.
The third core team consists of the following
members:

• John Baldwin, newly elected. FreeBSD SMP
technical lead. American.

• Jun Kuriyama, newly elected. Japanese.

• Greg Lehey, member of core.2. Kernel hack-
er, author of the Vinum Volume manager.
Australian (Adelaide).

• Warner Losh, member of core.2. Network
hacker. American.

• Mark Murray, newly elected. Security hacker.
Zimbabwean.

• Wes Peters, newly elected. Network hacker.
American.

• Murray Stokely, newly elected. FreeBSD Re-
lease Engineer. American.

• Robert Watson, member of core.2. Network
hacker. British.

• Peter Wemm, only member of the original
core team left. Universal Kernel Hacker.
Australian (Perth).

This time around, all those members of the sec-
ond core team (four) who stood for election were
re-elected.

In many ways, this core team composition is the
best we have had. In particular, we hav e better
technical representation (John Baldwin) and the
representation of the Release Engineer, Murray
Stokely.

The first elected FreeBSD core team got off to an
erratic start. As the resignation letters of Jordan
Hubbard and Mike Smith show, this was at least
partially because of unrealistic expectations of the
tasks involved. The new core team looks like it
might finally be pointing in the right direction.

Conclusions
The idea of independent free software projects is
still very new. Things are changing rapidly, and
it’s difficult to guess what will happen in the fu-
ture. A number of things have become evident,
though:

• It’s possible to run a small software project
without significant administrative overhead.
It’s impossible to run a large software project
without significant administrative overhead.

• A good kernel hacker is not automatically a
good manager.

• The problems that large projects face do not
differ significantly between volunteer and
commercial projects.

• Working on a big software project has almost
never been ‘‘fun’’. That was one of the rea-
sons that the free operating system projects
started in the first place: here was a chance to
work on software free from the constraints of
project management. This aspect, sadly, is a
thing of the past.

In summary, I suspect that the FreeBSD project,
and other similar projects, will gradually become
more formalized, more like commercial operating
systems. So what will distinguish them? I fear
that the distinctions will become less and less as
time goes on.

