5 February 2005 02:09

Terminal Drivers

Terminal 1/O is a real can of worms. In the Seventh Edition, it wasn’t exactly simple. To
quote the terminal driver man page,

Theterminal handler has clearly entered the race for ever-greater complexity and generality.
It's still not complex and general enough for TENEX fans.

Since then, things have gone steadily downhill.
The most important terminal driver versions are:

e The “old” terminal driver, derived from the Seventh Edition terminal driver. This driver
is still in use in XENIX and older BSD versions.

e The System I11/System V terminal driver, also called termio.
e The POSIX.1 termiosroutines, derived from termio.

Most modern systems support more than one kind of serial line driver. This is known as the
line discipline. Apart from terminal drivers, the most important line disciplines for asynchro-
nous lines are SLIP (Serial Line Internet Protocol) and PPP (Point to Point Protocol). These
are very implementation dependent, and we won’t discuss them further. The line discipline is
set with the TI OCSETD i oct | , described on page 259.

It’s beyond the scope of this book to explain all the intricacies and kludges that have been
added to terminal handlers over the decades. Advanced Programming in the UNIX environ-
ment, by Richard Stevens, gives you a good overview of current practice, and you shouldn’t
really want to know about older versions unless you have trouble with them. In the following
discussion, we’ll concentrate on the four areas that cause the most headaches when porting
programs:

e The externally visible data structures used for passing information to and from the driver.

« A brief overview of the different operational modes (raw, cooked, cbreak, canonical and
non-canonical).

235

5 February 2005 02:09

236

+ Theioctl requestinterface to the terminal driver, one of the favourite problem areas in
porting terminal-related software.

+ The POSIX.1 termios request interface.

The documentation of every driver describes at least two different modes of treating terminal
input. The Seventh Edition and BSD drivers define three:

« Inraw mode, the r ead system call passes input characters to the caller exactly as they
are entered. No processing takes place in the driver. This mode is useful for programs
which want to interpret characters themselves, such as full-screen editors.

« cooked mode interprets a number of special characters, including the new line character
\n. Aread call will terminate on a\ n. This is the normal mode used by programs that
don’t want to be bothered by the intricacies of terminal programming.

« cbreak mode performs partial interpretation of the special characters, this time not
including \ n. cbreak mode is easier to use than raw mode, and is adequate for many pur-
poses. It’s a matter of taste whether you prefer this to raw mode or not.

By contrast, termio and termios specify two different processing modes for terminal input:

+ canonical” mode performs significant processing on input before passing it to the calling
function. Up to 21 input special characters may be used to tell the driver to do things as
varied as start and stop output, to clear the input buffer, to send signals to the process and
to terminate a line in a number of different ways.

« Non-canonical input mode, in which the driver does not interpret input characters spe-
cially (this corresponds roughly to BSD cbreak mode).

In fact, subdividing the terminal operation into modes is an oversimplification: a large number
of flags modify the operational modes. Later in the chapter we’ll look at how to set these
modes with termios.

Typical terminal code

This is all rather abstract: let’s look at a simple example: a program wants to read a single
character from the terminal. To do this, it needs to set raw or non-canonical mode, read the
character, and then reinstate the previous mode. For the old terminal driver, the code looks
like Example 15-1:

Example 15-1:

struct sgttyb initial_status; /* initial termos flags */

struct sgttyb raw status; /* and the sane with icanon reset */
ioctl (stdin, TIOOETA &nitial_status); /* get attributes */

raw status = initial_status; /* nake a copy */

raw status.sg_flags | = RAW /* and set raw node */

* The word canon refers to (religious) law: the intent is that this should be the correct or standard way to
handle input characters. See the New Hacker’s Dictionary for a long discussion of the term.

5 February 2005 02:09

Chapter 15: Terminal Drivers 237

Example 15—1: (continued)

ioctl (stdin, TIOCSETN, &raw_status); /* set the new terminal flags */
puts ("2 *);
if ((reply = getchar Q) != "\n”) /* get a reply */

puts ("\n""); /* and finish the line */

ioctl (stdin, TIOCSETN, &initial_status); /* set the old terminal flags */

With the System V termio driver, it would look like Example 15-2:

Example 15-2:
struct termio initial_status; /* initial termio flags */
struct termio noicanon_status; /* and the same with icanon reset */
ioctl (stdin, TCGETA, &initial_status); /* get attributes */
noicanon_status = initial_status; /* make a copy */
noicanon_status.c_Iflag & TI1CANON; /* and turn icanon off */
ioctl (stdin, TCSETA, &noicanon_status); /* set non-canonical mode */
puts (*? ');
if ((reply = getchar Q) = "\n”) /* get a reply */

puts C"\n'"); /* and finish the line */
ioctl (stdin, TCSETA, &initial_status)) /* reset old terminal mode */

Don't rely on code like this to be termio code: termios code can look almost identical. Cor-
rect termios code uses the termios functions which we will look at on page 265, and looks like
Example 15-3:

Example 15—-3:

struct termios initial_status; /* initial termios flags */

struct termios noicanon_status; /* and the same with icanon reset */
tcgetattr (stdin, &initial_status)l /* get current attributes */
noicanon_status = initial_status; /* make a copy */
noicanon_status.c_Iflag & TICANON; /* and turn icanon off */

tcsetattr (stdin, TCSANOW, &noicanon status); /* set non-canonical mode */

puts ("2 *);
if ((reply = getchar Q) = "\n”) /* get a reply */
puts ("\n""); /* and finish the line */

tesetattr (stdin, TCSANOW, &initial_status); /* reset old terminal mode */

Terminology

Before we start, it's agood idea to be clear about afew terms that are frequently confused:

e All terminal drivers buffer 1/0 in two queues, an input queue and an output queue. The
input queue contains characters that the user has entered and the process has not yet read.
The output queue contains characters that the process has written but that have not yet
been output to the terminal. These queues are maintained inside the terminal driver.
Don't confuse them with buffers maintained in the process data space by the stdio rou-
tines.

5 February 2005 02:09

238

The term flush can mean to discard the contents of a queue, or to wait until they have all
been output to the terminal. Most of the time it means to discard the contents, and that’s
how we’ll use it in this chapter.

The term drain means to wait until the contents of the output queue have been written to
the terminal. This is also one of the meanings of flush.

Special characters, frequently called control characters, are input characters that cause
the terminal driver to do something out of the ordinary. For example, CTRL- D usually
causes the terminal driver to return an end-of-file indication. The term special charac-
ters is the better term, since you can set them to characters that are not ASCII control
characters. For example, even today, the default erase character in System V is #: it’s a
special character, but not an ASCII control character.

The baud rate of a modem is the number of units of information it can transmit per sec-
ond. Modems are analogue devices that can represent multiple bits in a single unit of
information—modern modems encode up to 6 bits per unit. For example, a modern
V.32bis modem will transfer 14400 bits per second, but runs at only 2400 baud. Baud
rates are of interest only to modem designers.

As the name indicates, the bit rate of a serial line indicates how many bits it can transfer
per second. Bit rates are often erroneously called baud rates, even in official documenta-
tion. The number of bytes transferred per second depends on the configuration: nor-
mally, an asynchronous serial line will transmit one start bit and one stop bit in addition
to the data, so it transmits 10 bits per byte.

break is an obsolescent method to signal an unusual condition over an asynchronous line.
Normally, a continuous voltage or current is present on a line except when data is being
transferred. Break effectively breaks (disconnects) the line for a period between .25 and
.5 second. The serial hardware detects this and reports it separately. One of the prob-
lems with break is that it is intimately related to the serial line hardware.

DCE and DTE mean data communication equipment and data terminal equipment
respectively. In a modem connection, the modem is the DCE and both terminal and
computer are DTEs. In a direct connect, the terminal is the DTE and the computer is the
DCE. Different cabling is required for these two situations.

RS-232, also known as EIA-232, is a standard for terminal wiring. In Europe, it is some-
times referred to as CCITT V.24, though V.24 does not in fact correspond exactly to
RS-232. It defines a number of signals, listed in Table 15-1.

Table 15—1: RS-232 signals

5 February 2005 02:09

Chapter 15: Terminal Drivers 239

Table 15—1: RS-232 signals (continued)

RS-232

name pin | purpose

PG 1 Protective ground. Used for electrical grounding only.

TxD 2 Transmitted data.

RxD 3 Received data.

RTS 4 Request to send. Indicates that the device has data to output.

CTS 5 Clear to send. Indicates that the device can receive input. Can be used
with RTS to implement flow control.

DSR 6 Data set ready. Indicates that the modem (data set in older parlance) is
powered on.

SG 7 Signal ground. Return for the other signals.

DD 8 Carrier detect. Indicates that the modem has connection with another
modem.

DIR 20 Data terminal ready. Indicates that the terminal or computer is ready to
talk to the modem.

R 22 Ring indicator. Raised by a modem to indicate that an incoming call is
ringing.

For more details about RS-232, see RS-232 made easy, second edition by Martin Seyer.

Terminal data structures

In this section, we’ll take a detailed look at the data structures you’re likely to encounter when
porting software from a different platform. | have included typical literal values for the
macros. Don’t ever use these values! They’re not guaranteed to be correct for every imple-
mentation, and they’re included only to help you if you find that the program includes literals
rather than macro names. When writing code, always use the names.

Old terminal driver definitions

In the Seventh Edition, mosti oct| calls that took a parameter referred to a struct sgttyb,
which was defined in /usr/include/sgtty.h:

st ruct
{
char
char
char
char
int
char
char
char
char
char

sgttyb

sg_i speed;
sg_ospeed;
sg_er ase;
sg Kkill;
sg_flags;
sg nldly;
sg crdly;
sg_htdly;
sg vtdly;
sg_w dt h;

/* input bit rate code */

/* output bit rate code */

/* erase character */

[* kill character */

/* Terminal flags (see Table 15-3) */
/* delay after \n character */

/* delay after \r character */

/* delay after tab character */

/* delay after vt character */

/* terminal line width */

240

char sg_length;

I

The bit rates in sg_iispeed and sg_ospeed are encoded, and allow only a certain number of

Speeds:

Table 15—2: Seventh Edition bit rate codes

/* terminal page length */

Parameter | value | meaning

BO 0 hang up phone
B50 1 50 bits/second
B75 2 75 bits/second
B110 3 110 bits/second
B134 4 134.5 bits/second
B150 5 150 bits/second
B200 6 200 bits/second
B300 7 300 hits/second
B600 8 600 bits/second
B1200 9 1200 hits/second
B1800 10 1800 hits/second
B2400 11 2400 bits/second
B4800 12 4800 bits/second
B9600 13 9600 bits/second
EXTA 14 External A

EXTB 15 Externa B

Thefi eld sg_Flags contains a bit map specifying the following actions:

Table 15—3: Seventh Edition tty flags

Parameter value | value | meaning
(octal) (hex)
XTABS 02000 | Ox400 | Replace output tabs by spaces.
INDCTL 01000 | 0x200 | Echo control charactersas™a, “b etc.
SCOPE 0400 | 0x100 | Enable neat erasing functions on display terminas
("scopes").
EVENP 0200 0x80 | Even parity allowed oninput (most terminals).
OoDDP 0100 0x40 | Odd parity allowed on input.
RAW 040 0x20 | Raw mode: wake up on all characters, 8-bit interface.
CRMOD 020 0x10 | Map CRinto LF; echo LF or CRasCR-LF.
ECHO 010 0x8 | Echo (full duplex).
LCASE 04 0x4 | Map upper case to lower on input.
CBREAK 02 0x2 | Return each character as soon as typed.

5 February 2005 02:09

5 February 2005 02:09

Chapter 15: Terminal Drivers 241

Table 15—3: Seventh Edition tty flags (continued)

Par anet er value value | meaning
(octal) (hex)
TANEM | 01 | Oxl1 | Automatic flow control.

A second structure defines additional special characters that the driver interprets in cooked
mode. They are stored inastruct tchars, which is also defined in /usr/include/sgtty.h:

struct tchars

{

char t_intrc; /* interrupt (default DEL) */

char t_quitc; /* quit (default ~“\) */

char t_startc; /* start output (default “Q*/

char t_stopc; /* stop output (default "S5 */

char t_eofc; /* end-of -file (default "D */

char t_brkc; /* input delimter (like nl, default -1) */
b

Each of these characters can be disabled by setting it to -1 (octal 0377), as is done with the
defaultt _br kc. This means that no key can invoke its effect.

termio and termios structures

The System V terminal driver defines a st ruct term o to represent the data that the Seventh
Edition driver stored in sgttyb and tchars. In POSIX.1 termios, it is called struct

term os. Both are very similar: compared to the Seventh Edition, they appear to have been
shorter by moving the special characters, which in sgttyb were stored as individual ele-
ments, into the array c_cc:

struct termo

{

unsi gned short c_iflag; /* input nodes */

unsi gned short c_ofl ag; /* output nodes */

unsi gned short c_cfl ag; /* control nodes */

unsi gned short c_| flag; /* local nodes */

char c_line; /* line discipline */

unsi gned char c_cc [NOJ; /* special chars */

I ong c_i speed; /* input speed, sone termos */
| ong c_ospeed; /* output speed, some termos */
b

The variable c_| i ne specifies the line discipline. It is defined in termio, and not in the
POSIX.1 termios standard, but some System V versions of termios have it anyway. NOCis the
number of special characters. We’ll look at them after the flags.

Not all versions of System V define the members c_i speed and c_ospeed. Instead, they
encode the line speed in c_cfl ag. The correct way to access them is via the termios utility
functions cf geti speed, cf seti speed, cf get ospeed, cf set ospeed and cf set speed,
which we will discuss on page 265. To make matters worse, some older System V termios
implementations supplied c_i speed and c_ospeed, but the implementation didn’t use them.
In addition, many systems cannot handle different input and output speeds, so setting one

5 February 2005 02:09

242

speed automatically sets the other aswell.

c_iflag,c_oflag,c_cflagandc_| flag (atotal of 128 possible hits) take the place of the
Seventh Edition sg_f | ags.

c_iflag

c_i f1 ag specifi es how the driver treats terminal input:

Table 15—4: termios c_iflag bits

Par am value value | meaning

eter (SysV) (BSD)

| G\BRK Ox1 Ox1 | Ignore break condition.

BRKI NT 0x2 0x2 | GenerateaSl @ NT signal on break.

| G\PAR 0x4 0x4 | Ignore characters with parity errors.

PARMRK 0x8 0x8 | If a parity or framing error occurs on input, accept it
and insert into the input stream the three-character se-
quence Oxf f , 0, and the character received.

I NPCK 0x10 0x10 | Enableinput parity check.

ISTRP 0x20 0x20 | Strip bit 7 from character.

I NLCR 0x40 0x40 | Map NL to CR oninput.

| ANR 0x80 0x80 | IgnoreCR.

I CGR\L 0x100 0x100 | Map CRto NL oninput.

| uaLch 0x200 Map uppercase to lowercase on input.

I XON 0x400 0x200 | Enable output flow control with XON/XOFF (CTRL-
SICTR.- Q.

| XANY 0x800 0x800 | Allow any character to restart output after being
stopped by CTRL- S.

| XCOFF 0x1000 0x400 | Enableinput flbow control with XON/X OFF.

CTSFLON | 0x2000 Enable CTS protocol for amodem line.

RTSFLON | 0x4000 Enable RTS signaling for amodem line.

| MAXBEL? | 0x2000 | Ox2000 | Ring theterminal bell when the input queueisfull.

not in POSIX.1 or BSD.
% not in POSIX.1 and some versions of System V.

A couple of these flags are not portable:

e 1 UQ.Cmaps lower case to upper case: if you enter alower case character, it is converted
to an upper case character and echos that way. Many people consider this a bug, not a
feature. There's no good way to implement this on a non-System V system. If you
really want to have this behaviour, you'll have to turn off echo and provide an echo from
the program.

e CTSFLOWand RTSFLOWspecify fow control viathe RS-232 signals CTS and RTS. These
are control flags, of course, not input fegs, but some versions of System V put them here

5 February 2005 02:09

Chapter 15: Terminal Drivers

243

for backward compatibility with XENIX. Some other versions of System V don’t defi ne
them at all, and BSD systems and yet other System V systems supply theminc_cf| ags,

where they belong.

c_of | ag specifi esthe behaviour on output.

Table 15-5: termios c_oflag bits

Par am value value | meaning

eter (SysV) | (BSD)

aPCsT Ox1 Ox1 | Postprocess output.

aax 0x2 Map lower case to upper on output.
ONLR 0x4 0x2 | Map NL to CR-NL on outpuit.
OCR\L 0x8 0x8 | Map CRto NL on output.

ONOCR 0x10 0x10 | Suppress CR output at column O.
CNLRET 0x20 0x20 | NL performs CR function.

CFl LL 0x40 0x40 | Usefill charactersfor delay.
CFDEL 0x80 0x80 | Fill isDEL if set, otherwise NUL."
NLOLY! 0x100 Mask bit for new-line delays:

NLO 0x0 No delay after NL.

N1 0x100 One character delay after NL.
aROLY 0x600 Mask bits for carriage-return delays:
(024] 0x0 No delay after CR.

RL 0x200 One character delay after CR.

R 0x400 Two characters delay after CR.
3 0x600 Three characters delay after CR.
TABDLY' | 0x18000 Mask bits for horizontal-tab delays:
TABO 0x0 No delay after HT.

TABL 0x800 One character delay after HT.
TAR2 0x1000 Two characters delay after HT.
TAB3 0x1800 Expand tabs to spaces.

BSOLY 0x2000 Mask bit for backspace delays:
B0 0x0 No delay after BS.

BS1 0x2000 One character delay after BS.
VTDLY! 0x4000 Mask bit for vertical-tab delays:
VTO 0x0 No delay after VT.

VT1 0x4000 One character delay after VT.
FFOLY 0x8000 Mask bit for form-feed delays:

FFO 0x0 No delay after FF.

FF1 0x8000 One character delay after FF.

* The ASCII character represented by binary O (the C character constant \ 0). Not to be confused with
the null pointer, whichin Cisusually called NULL.

5 February 2005 02:09

244

Table 15—5: termios c_oflag bits (continued)
‘ot in POSIX.1 or BSD.
A number of these flags are not portable;

e System V supplies alarge number of flegs designed to compensate for mechanical delays
in old hardcopy terminal equipment. It's doubtful that any of this is needed nowadays.
If you do have an unbuffered hardcopy terminal connected to your BSD machine, and it
loses characters at the beginning of aline or a page, you should check whether CTS/RTS
flow control might not help. Or you could buy a more modern terminal.

e (@QAKL is obsolete, of course, but if that old hardcopy terminal also doesn't support
lower-case, and it doesn't upshift |lower-case characters automatically, you'll have to do it
programatically.

c_cfl ag specifi es hardware control aspects of the terminal interface:

Table 15—6: termios c_cflag bits

Par anet er value value | meaning
(SysV) (BSD)
BAD Oxf Bit rate
BO 0 Hang up
B50 Ox1 50 bps
B75 0x2 75 bps
B110 0x3 110 bps
B134 0x4 134 bps
B150 0x5 150 bps
B200 0x6 200 bps
B300 0ox7 300 bps
B600 0x8 600 bps
B1200 0x9 1200 bps
B1800 Oxa 1800 bps
B2400 Oxb 2400 bps
B4800 Oxc 4800 bps
B9600 Oxd 9600 bps
B19200 Oxe 19200 bps
EXTA Oxe External A
B38400 Oxf 38400 bps
EXTB Oxf External B
C3 zE 0x30 0x300 | Mask bitsfor character size:
CH 0x0 0x0 5 bits
Cs5 0x10 0x100 6 bits
cs7 0x20 0x200 7 bits
C8 0x30 0x300 8 bits

5 February 2005 02:09

Chapter 15: Terminal Drivers 245

Table 15—6: termios c_cflag bits (continued)

Par anet er value value | meaning
(SysV) (BSD)
CSTCPB 0x40 0x400 | Send two stop bits (if not set, send 1 stop bit).
CREAD 0x80 0x800 | Enable receiver.
PARENB 0x100 0x1000 | Enable parity.
PARCDD 0x200 0x2000 | Setodd parity if set, otherwise even.
HUPCL 0x400 0x4000 | Hang up on last close.
CLaCAL 0x800 0x8000 | Disable modem control lines.
ROVIEN 0x1000 see below
XMILEN 0x2000 see below
LOBLK® 0x4000 Block layer output.
CTSFLON 0x10000 CTS flow control of output.
QCTS _CFLOA 0x10000 | CTS flow control of output.
QRTSCTS 0x10000 | CTS flow control of output (alternative symbol).
RTSFLOW 0x20000 | RTS flow control of input.
CRTS | FLOA 0x20000 | RTS flow control of input.
MDVBUF 0x100000 Flow control output via Carrier.

! speeds are encoded differently in BSD—see below.
2 not in POSIX.1 or System V.
*not in POSIX.1 or BSD.

Again, some of these flags are only available on specific platforms:

« RCVIEN and XMI'LEN are defined in some System V header files, but they are not docu-
mented.

+ BSD systems supply CRTS | FLONand OCTS_CFLONfor RS-232 flow control. Some
System V systems supply RTSFLONand CTSFLOMo mean the same thing, but other Sys-
tem V systems don’t support it, and other systems again put these flags in c_i f | ag.

c_| fl ag specifies the behaviour specific to the line discipline. This flag varies so much
between System V and BSD that it’s easier to put them in separate tables. Table 15-7
describes the standard System V line discipline, and Table 15-8 describes the standard BSD
line discipline,

Table 15—7: System V termios c_lflag bits

Param | value | meaning

eter

1SIG 0x1 | Allow the characters | NTR QU T, SUSP and DSUSP to generate signals.
| CANCN 0x2 | Enable canonical input (erase and Kill processing).

246

Table 15—7: System V termios c_lflag bits (continued)

Param | value | meaning
eter

XCASE 0x4 | In conjunction with | CANCN, map upper/lower case to an upper-case only
terminal. Lower case letters are displayed in upper case, and upper case
letters are displayed with a preceding backslash (\).

ECHO 0x8 | Enable echo.

ECHCE 0x10 | Erase character removes character from screen.

ECHCK 0x20 | Echo NL after line kill character.

ECHONL | Ox40 | Echo NL even if echo is off.

NOFLSH | 0x80 | Disable flush after interrupt or quit.

Here’s the BSD version:

Table 15—8: BSD termios c_lflag bits

Par anet er value | meaning

ECHKE 0x1 | Line kill erases line from screen.

ECHCE 0x2 | Erase character removes character from screen.

ECHX 0x4 | Echo NL after line kill character.

ECHO 0x8 | Enable echo.

ECHO\L 0x10 | Echo NL even if echo is off.

ECHCPRT! 0x20 | Visual erase mode for hardcopy.

EcHoCTL! 0x40 | Echo control chars as “(Char).

I1SIG 0x80 | Enable signals | NTR QU T, SUSP and DSUSP.

| CANON 0x100 | Enable canonical input (erase and Kill processing).

ALTVERASE" 0x200 | Use alternate WERASE algorithm. Instead of erasing back to
the first blank space, erase back to the first non-alphanumeric
character.

| EXTEN 0x400 | Enable D SCARD and LNEXT.

EXTPROC 0x800 | This flag carries the comment "External processing”. Apart
from that, it appears to be undocumented.

TCSTCP 0x400000 | If a background process attempts output, send a SI GTTQU to
it. By default this stops the process.

FLUSHO' 0x800000 | Status return only: output being flushed.

NOKERN NFOH 0x2000000 | Prevent the STATUS character from displaying information on
the foreground process group.

PENDI N 0x20000000 | Pending input is currently being redisplayed.

NCFLSH 0x80000000 | Don’tflush input and output queues after receiving SI @ NT or
SCUT.

" not in POSIX.1.

5 February 2005 02:09

Chapter 15: Terminal Drivers 247

Converting the c_| f | ag bits is even more of a problem:

« XCASE is part of the System V upper case syndrome that we saw with c_i fl ag and
c_of | ag.

+ BSD offers a number of echo flags that are not available in System V. In practice, this is
a cosmetic difference in the way input works. Consider a BSD program with a line like:

termc_lflag = ECHKE | ECHCE | ECHXK | ECHOCIL;
This will fail to compile under System V because ECHCKE and ECHOCTL are undefined.
You can probably ignore these flags, so the way to fix it would be something like:

termc_|flag = BECHCE | ECHXK

#i f def ECHKE

| ECHXE
#endi f
#i f def ECHOCTL

| ECHOCTL
#endi f

Note the lonesome semicolon on the last line.

« The flags FLUSHOand PENDI N are status flags that cannot be set. There’s no way to get
this information in System V.

« NCKERN NFOrefers to the STATUS character, which we will see below. This is not sup-
ported in System V.

special characters

The number of special characters has increased from 6 in the Seventh Edition (struct

t char s) to 8 in termio and a total of 20 in termios (though 4 of the termios special characters
are “reserved”—in other words, not defined). Despite this number, there is no provision for
redefining CRand NL.

Table 15—9: termio and termios special characters

Index in Index in
c_cc | Default c_cc | Default

Name (SysV) | (SysV) (BSD) | (BSD Function

R (none) | \r (none) | \r Go to beginning of line. In
canonical and cooked modes,
complete a read request.

NL (none) | \n (none) | \n End line. In canonical and
cooked modes, complete a read
request.

VI NTR 0 | DAL 8 | CTR.-C | Generate an Sl @ NT signal.

5 February 2005 02:09

248

Table 15—9: termio and termios special characters (continued)

Index in Index in
c_cc | Default c_cc | Default

Name (SysV) | (SysV) (BSD) | (BSD Function

VQU T 1| CTR-| 9 | CTR-| Generatea Sl GQU T signal.

VERASE 2 | # 3| DAL Erase last character.

WKI LL 3| @ 5 | CTR-U | Erasecurrent input line.

VECF 4 | CIR.-D 0 | CTR.-D | Return end-of-fi leindication.

VEQL 5] NL 1 |\377 Alternate end-of-line character.

VEQL2! 6 | NL 2 | \377 Alternate end-of-line character.

VOWrCH" 2 7 | NL shl layers: switch shell.

VSTART 8 | CTR-Q 12 | CTR.-Q | Resume output after stop.

VSTCP 9 | CTIR.-S 13 | CTR.-S | Stop output.

VSUSP 10 | CTR.-Z 10 | CTR.-Z | Generate a Sl GISTP signal
when typed.

VOSSP 11 | CTR-Y 11 | CTR-Y | Generate a Sl GISTP signa
when the character is read.

VREPR NT* 12 | CIR-R 6 | CTR-R | Redisplay al characters in the
input queue (in other words,
characters that have been input
but not yet read by any
process). The term "print" re-
calls the days of harcopy termi-
nals.

VDI SCARD! 13 | CTR-0 15 | CTR-O | Discard all terminal output until
another DI SCARD character ar-
rives, more input is typed or the
program clears the condition.

WERASE! 14 | CTR-W 4 | CTR-W | Erasethe preceding word.

VLNEXT! 15 | CTR.-V 14 | CTR-V | Interpret next character literally.

VSTATUS" 3 18 | \377 Send a SI @ NFO signal to the
foreground process group. |If
NCKERN NFOis not set, the ker-
nel also prints a status message
on the terminal.

ot in POSIX.1.

Z shi layers are a System V method of multiplexing several shells on one terminal. They are

not supported on BSD systems.

® not supported on System V.

* These archaic, teletype-related values are till the default for System V. The file
{usr/include/sys/termio.h contains alternative defi nitions (VERASE set to CTRL- H and WKI LL
set to CTRL- X), but these need to be specifi cally enabled by defi ning the preprocessor variable
_NEWTTY_CTR..

5 February 2005 02:09

Chapter 15: Terminal Drivers 249

You will frequently see these names without the leading V. For example, the stty program
referstoVQU Tas QU T.

Terminal driver modes

Depending on the driver, it looks as if you have a choice of two or three operational modes on
input:

+ With the termio and termios drivers, you have the choice of canonical and non-canonical
mode.

* With the old terminal driver, you have the choice of raw, cooked and cbreak modes.

This distinction is not as clear-cut as it appears: in fact, you can set up both drivers to do most
things you want.

Canonical mode

To quote Richard Stevens’ Advanced Programming in the UNIX environment: “Canonical
mode is simple”—it takes only about 30 pages for a brief description. For an even simpler
description: everything in the rest of this chapter applies to canonical mode unless otherwise
stated.

Non-canonical mode

Non-canonical mode ignores all special characters except INTR, QUIT, SUSP, STRT, STOP,
DISCARD and LNEXT. If you don’t want these to be interpreted, you can disable them by
setting the corresponding entry int char s to _PCSl X VD SABLE.

The terminal mode has a strong influence on how a read from a terminal completes. In canon-
ical mode, a read request will complete when the number of characters requested has been
input, or when the user enters one of the characters CR, N, VEOL or (where supported)
VEOL2. In non-canonical mode, no special character causes a normal read completion. The
way a read request completes depends on two variables, MIN and TIME. MIN represents a
minimum number of characters to be read, and TIME represents a time in units of 0.1 second.
There are four possible cases:

1. Both MIN and TIME are non-zero. In this case, a read will complete when either MIN
characters have been entered or TIME/10 seconds have passed since a character was
entered. The timer starts when a character is entered, so at least one character must be
entered for the read to complete.

2. MIN is non-zero, TIME is zero. In this case, the read will not complete until MIN char-
acters have been entered.

3. MINis zero and TIME is non-zero. The read will complete after entering one character
or after TIME/10 seconds. In the latter case, O characters are returned. This is not the
same as setting MIN to 1 and leaving TIME as it is: in this case, the read would not

5 February 2005 02:09

5 February 2005 02:09

250

complete until at least one character is entered.

4. Both MIN and TIME are set to 0. In this case, r ead returns immediately with any char-
acters that may be waiting.

If MIN is non-zero, it overrides the read count specified to r ead, even if r ead requests less
than MIN characters: the remaining characters are kept in the input queue for the next r ead
request. This can have the unpleasant and confusing effect that at first nothing happens when
you type something in, and then suddenly multiple reads complete.

Non-canonical mode does not interpret all the special characters, but it needs space to store
MIN and TIME. In 4.4BSD, two of the reserved characters are used for this purpose. Most
other implementations, including XENIX, System V and some older BSDs do it differently,
and this can cause problems:

« The value of VEOF is used for VMIN. This value is normally CTRL- D, which is decimal
4: if you switch from canonical to non-canonical mode and do not change MIN, you may
find that a read of a single character will not complete until you enter a total of four char-
acters.

« The value of VEOL is used for TIME. This is normally 0.

Raw mode

Raw mode does almost no interpretation of the input stream. In particular, no special charac-
ters are recognized, and there is no timeout. The non-canonical mode variables MIN and
TIME do not exist. The result is the same as setting MIN to 1 and TIME to 0 in non-canonical
mode.

Cooked mode

The cooked mode of the old terminal driver is essentially the same as canonical mode, within
the limitations of the driver data structures—termios offers some features that are not avail-
able with the old terminal driver, such as alternate end-of-line characters.

Cbreak mode
To quote the Seventh Edition manual:

CBREAK is a sort of half-cooked (rare?) mode.

In terms of termios, it is quite close to non-canonical mode: the only difference is that chreak
mode turns off echo. Non-canonical mode does not specify whether echo is on or off.

Emulating old terminal driver modes

Table 15-10 illustrates how you can define old driver terminal modes with termios. You’ll see
that a large number of entries are not defined: raw and cbreak modes do not specify how these

5 February 2005 02:09

Chapter 15: Terminal Drivers 251

parameters are set. You can set them to whatever you feel appropriate.

Table 15—10: Defining terminal modes with termios

Flag

raw cbreak
mode | mode

BRKINT | of f on
| NPCK of f on

ISTRP | off not defi ned
| CR\L of f not defi ned
| XON of f not defi ned

CPCsT of f not defi ned

Csl ZE C8 not defi ned
PARENB | of f not defi ned

ECHO of f of f
I1SIG of f not defi ned
| CANON | of f of f
| EXTEN | off not defi ned

W N 1 1
VTI ME 0 0
gtty and stty

You may still occasionally run into the system callsst ty and gt t y, which are leftovers from
the Seventh Edition. You can replace stty with thei oct| function TI QCSETP, and you can
replace gtty with thei oct!| request Tl GOGETP. Read more on both these requests on page

257.

The Linux terminal driver

Linux has the great advantage of being a recent development, so it doesn’t have a number of
the warts of older terminal drivers. It goes to some trouble to be compatible, however:

In addition to POSIX.1 termios, the kernel also directly supports System V termio.

The library libbsd.a includesi oct | calls for the old terminal driver, which Linux users
call the BSD driver.

The only line discipline you can expect to work under Linux is the standard tty line disci-
plineN TTY.

5 February 2005 02:09

252

joctl

i oct| isthefile system catchall: if thereisn't any other function to do the job, then somebody
will bend i oct| to doit. Nowhere is this more evident than in termina /O handling. Asa
result of this catchall nature, it's not easy to represent i oct | parametersin C.

WE'Il look at the semanticsfi rst. Thei oct| function call takes three parameters:
1. Afilenumber.
2. Arequest, whichwe'll look at in more detail in the next section.

3. When present, the meaining is defi ned by the request. It could be an integer, another
request code or a pointer to some structure defi ned by the request.

ioctl request codes

The key to understanding i oct | is the request code. Request codes are usually subdivided
into a number of fi elds. For example, 4.4BSD defi nes four fi elds:

Bit 31 29 28 16 15 87 0

’ type | length | ioctl type I function subcode ‘

e Thefi rst three bits specify the type of parameter. | OC VA D (0x20 in thefi rst byte) spec-
ifi esthat the request takes no parameters, | QC_QUJT (0x40 in the fi rst byte) specifi es that
the parameters are to be copied out of the kernel (in other words, that the parameters are
to be returned to the user), and | OC | N (0x80 in the fi rst byte) specifi es that the parame-
ters are to be copied in to the kernel (they areto be passed toi oct |).

e Thenext 13 bits specify the length of the parameter in bytes.

e The next byte specifi es the type of request. This is frequently a mnemonic letter. In
4.4BSD, thisfi eld is set to the lower-case letter t for terminal ioctls.

e Finaly, thelast byte is a number used to identify the request uniquely.
This encoding depends heavily on the operating system. Other systems (especially, of course,

16 hit systems) encode things differently, but the general principle remains the same.

Both the request code and the third parameter, where present, do not map easily to C language
data structures. As a result, the defi nition of the function varies signifi cantly. For example,
XENIX and BSD declareit as:

#i ncl ude <sys/ioctl.h>
int ioctl (int fd, unsigned | ong request, char *argp)

and System V.4 has

Chapter 15: Terminal Drivers 253

#i ncl ude <uni std. h>
int ioctl (int fs, int request, [* arg */ ...);

Strictly speaking, since the request code is not a number, both i nt and unsi gned | ong are
incorrect, but they both do the job.

When debugging a program, it's not always easy to determine which request has been passed
toi octl . If you have the source code, you will see something like

ioctl (stdin, TIOOCETA &ernstat);

Unfortunately, a number of i oct| calls are embedded in libraries to which you probably
don't have source, but you can fi gure out what's going on by setting a breakpoint oni oct | .
In this example, when you hit the breakpoint, you will see something like:

(gdb) bt
#0 ioctl (file=0, request=1076655123, paraneter=0xefbfd58c "") at ioctl.c:6
#1 0x10af in main () at foo.c:12

The value of request looks completely random. In hexadecimal it starts to make a little
more sense:

(gdb) p/x request
$1 = 0x402c7413

If we compare this with the request code layout in the example above, we can recognize afair
amount of information:

e Thefirst byte starts with 0x40, | OC_QUJT: the parameter exists and defi nes a return value.

e« The next 13 hits are Ox2c, the length to be returned (this is the length of struct
t er m os).

e The next byte is 0x74, the ASCII character t, indicating that this is a terminal i oct |
request.

e Thelast byteis0x13 (decimal 19).

It's easy enough to understand this when it's deciphered like this, but doing it yourself isalot
different. The fi rst problem is that there is no agreed place where the i oct| requests are
defi ned. The best place to start is in the header fi le sys/ioctl.h, which in the case of 4.4BSD
will lead you to the fi le sys/ioccom.h (sys/sys/ioccom.h in the 4.4BSD distribution). Here you
will fi nd code like:

#def i ne | GCPARM MASK Ox1f ff /* paraneter |ength, at nmost 13 bits */
#define | OCPARM LEN(X) (((x) >> 16) & | GCPARM MASK)

#def i ne | QCBASEOMY x) ((x) & " (1 CCPARM MAK << 16))

#def i ne | QOGROP(x) (((x) >>8) & Oxff)

#define 1CC_ MA D 0x20000000 /* no paraneters */
#define 1 QC_QJT 0x40000000 /* copy out paraneters */
#define 1GCIN 0x80000000 /* copy in paraneters */

These defi ne the basic parts of the request. Next come the individual types of request:

5 February 2005 02:09

5 February 2005 02:09

254

#define _| OJinout,group, numlen) \ pass a structure of length | en as paraneter
(inout | ((len & | COPARMMASK) << 16) | ((group) << 8) | (nun))

#define _1 g, n) _layraccvanp (g), (n), 0 No par anet er
#define _ICRg,n, t) _1QQI1QCC A, (9), (n), sizeof(t)) Return paraneter from kernel
#define |ONg,n,t) _1QQICCIN (g), (n), sizeof(t)) Pass paraneter to kernel

/* this should be ICRW but stdio got there first */
#define _|ONR(g,n,t) _1 GO CC | NAJT, (g9), (n), sizeof(t)) Pass and return paraneter

With these building blocks, we can now understand the real defi nitions;

#define TIOCSBRK _1Q't’, 123) /* set break bit */

#define TTGOBRK _1Q't’, 122) /* clear break bit */

#define TITOQCSDIR _1('t’, 121) /* set data ternminal ready */
#define TTOQOCDIR _1't’, 120) /* clear data termnal ready */
#define TITOOPARP _ICR't’, 119, int) /* get pgrp of tty */

#define TIOCSPARP _ION't’, 118, int) /* set pgrp of tty */

These defi ne four requests without parameters (_1 O), a request that returns ani nt parameter
from the kernel (_I OR), and arequest that passesani nt parameter to the kernel (_I OA).

Terminal ioctls
For anumber of reasons, it’s diffi cult to categorize terminal driveri oct| cals:

e Asthe termina driver has changed over the course of time, some implementors have
chosen to keep the old i oct| codes and give them new parameters. For example, the
Seventh Edition call TI OOGETA returned the terminal parameters to astruct sgttyb.
The same call in System V returns the values to astruct term o, and in 4.4BSD it
returnsthevaluestoastruct termos.

e Thedocumentation for many i oct | callsisextremely hazy: athough System V supports
the old terminal driver discipline, the documentation is very scant. Just because an
i oct! function is not documented in the man pages doesn’t mean that it isn’t supported:
it's better to check in the header files (usually something like sysitermio.h or
sysltermios.h).

e Manyioctl calsseem to duplicate functionality. There are minor differences, but even
they are treacherous. For example, in the Seventh Edition the TI OCSETA function drains
the output queue and discards the content of the input queue before setting the terminal
state. The same function in 4.4BSD performs the function immediately. To get the Sev-
enth Edition behaviour, you need to use TI QCSETAF. The behaviour in System V is not
documented, which means that you may be at the mercy of the implementor of the device
driver: on one system, it may behave like the Seventh Edition, on another like 4.4BSD.

In the following sections, we'll attempt to categorize the most frequent i oct | functionsin the

Chapter 15: Terminal Drivers 255

kind of framework that POSIX.1 usesfor termios. Here's an index to the mess:

Table 15—11: ioctl parameters

5 February 2005 02:09

Name Function Parameter 3 Page
TOFLSH Flush 1/0 int * 263
TOETA Get terminal state struct termo * 258
TOETS Get terminal state struct termos * | 258
TCSBRK Drain output, send break int * 261
TCSETA Set terminal state struct termo * 259
TCSETAF Drain I/O and set state struct termo * 259
TCSETAW Drain output and set state | struct termo * 259
TCSETS Set terminal state struct termos * | 258
TCSETSF Drain I/O and set state struct termos * | 258
TCSETSW Drain output and set state | struct termios * | 258
TCXONC Set fow control int * 262
Tl OOBRK Clear break (none) 260
Tl QODTR Clear DTR (none) 260
TI OCOOONS Set console int * 264
TI QCDRAI N Drain output queue (none) 262
TI QCFLUSH Flush 110 int * 263
TI GOETA Get current state struct termo * 256
Tl QOETC Get specia chars struct tchars * 258
TI QOCETD Set line discipline int *ldisc 259
TI GOCETP Get current state struct sgttyb * 257
Tl QOPGRP Get process group ID pidt * 263
TI QOGS D Get session ID pidt * 264
TI OQOGSCFTCAR | Get DCD indication int * 265
TI QOGN NSZ Get window size struct winsize * | 259
TI QOHPCL Hang up on clear (none) 258
TI QOMBI C Clear modem state bits int * 261
TI COMBI S Set modem state bits int * 261
TI QOMET Get modem state int * 261
Tl QOVBET Set modem state int * 261
TI QONXCL Clear exclusive use (none) 264
TI GONOTTY Drop controlling terminal | (none) 264
TI QOOUTQ Get output queue length int * 262
Tl OCSBRK Send break (none) 260
TI QCSCTTY Set controlling tty (none) 263
Tl OCSDIR Set DTR (none) 260
Tl OCSETA Set terminal state struct sgttyb * 257
Tl QCSETAF Drain I/O and set state struct termos * | 257
Tl QCSETAW Drain output and set state | struct termos * | 257

256

Table 15—11: ioctl parameters (continued)

Name Function Parameter 3 Page
Tl QCSETC Set special chars struct tchars * 258
Tl QCSETD Set line discipline int *ldisc 259
TI OCSETN Set state immediately struct sgttyb * 257
TI GCSETP Get current state struct sgttyb * 257
Tl QCSPGRP Set process group ID pidt * 263
TI OCSSCFTCAR | Set DCD indication int * 265
Tl QCSTART Start output (none) 262
T QCSTI Simulate input char * 262
Tl QCSTCP Stop output (none) 262
TI QCSWNSZ Set window size struct wnsize * | 259

Terminal attributes

One of the most fundamental groups of i oct| requests get and set the terminal state. This
areaisthe biggest mess of all. Each terminal driver has its own group of requests, the request
names are similar enough to be confusing, different systems use the same request names to
mean different things, and even in termios, there is no agreement between BSD and System V
about the names of the requests.

Table 15-12 gives an overview.

Table 15—12: Comparison of sgttyb, termio and termios ioctls

Function sgtty termo termos term os

request request request request

(BSD) (System V)

Get current state TI OOCGETA | TOCETA TI OOCETA TOETS
Get special chars TI OOCGETC | TOCETA TI OOCETA TOETS
Set terminal stateimmediately | TI OCSETN | TCSETA TI OCSETA TCSETS
Drain output and set state TCSETAW | TI QCSETAW | TCSETSW
Drain 1/O and set state TI OCSETA | TCSETAF | Tl OCSETAF | TCSETSF
Set specia chars TI GQCSETC | TCSETAF | Tl OCSETAF | TCSETSF
TIOCGETA

Thecalioctl (fd, TIOOGETA tern) placesthe current terminal parametersin the struc-
turet erm The usage differs depending on the system:

* Inthe Seventh Edition, t er mwas of typestruct sgttyb *.

* InSystemV,termisof typestruct termo *.

5 February 2005 02:09

5 February 2005 02:09

Chapter 15: Terminal Drivers 257

* In44BSD,termisof typestruct termos *.

e The Seventh Edition request TI QCSETN only sets the terminal state described in the fi rst
6 bytesof struct sgettyb.

TIOCSETA

Thecal ioctl (fd, TIQCSETA tern) setsthe current terminal state fromterm The
usage differs depending on the system:

e In the Seventh Edition, t er mwas of type struct sgttyb *. The system drained the
output queue and flushed the input queue before setting the parameters.

* InSystem V.3, termisof typestruct ternmio *. Thedrainand flush behaviour is not
documented.

e In4.4BSD, termisof typestruct termos *. The action is performed immediately
with no drain or fush. This is used to implement the t csetattr function with the
TCSANONoption.

TIOCGETP and TIOCSETP

TI QOCGETP and Tl QCSETP are obsolete versions of TI OOGETA and Tl OCSETA respectively.
They affect only the fi rst 6 bytes of the sgt t yb structure (sg_i speed to sg_fl ags). These
requests correspond in function to the obsolete Seventh Edition system callsstty andgtty.

TIOCSETAW

Thecall i octl (fd, TIOCSETAW void *term) waits for any output to complete, then
sets the terminal state associated with the device. 4.4BSD uses this call to implement the
tcsetattr function with the TCSADRAI N option. In XENIX, the parameter t er mis of type
struct term o;inother systemsisit of typestruct term os.

TIOCSETAF

Thecalioctl (fd, TIOCSETAF, void *tern) waitsfor any output to complete, fushes
any pending input and then sets the terminal state. 4.4BSD uses this call to implement the
tcsetattr function with the TCSAFLUSH option. In XENIX, the parameter t er mis of type
struct termo,inother systemsisit of typestruct term os.

TIOCSETN

Thecalioctl (fd, TIOCSETN struct sgttyb *tern) setsthe parameters but does
not delay or flush input. This call is supported by System V.3. and the Seventh Edition. In
the Seventh Edition, this function works only on the fi rst 6 bytes of the sgt t yb structure.

5 February 2005 02:09

258

TIOCHPCL

Thecal ioctl (fd, TIOOHPAL, NUL) specifi es that the terminal line is to be discon-
nected (hung up) when thefi leis closed for the last time.

TIOCGETC

Thecalioctl (fd, TIOOEIC struct tchars *chars) returns the terminal special
characterstochars.

TIOCSETC

Thecalioctl (fd, TIGCSETC struct tchars *chars) setstheterminal special char-
actersfromchars.

TCGETS

The call ioctl (fd, TOGETS, struct termios *term) returns the current terminal
parameterstot er m Thisfunction is supported by System V.4.

TCSETS

Thecdlioctl (fd, TCSETS, struct termos *tern) immediately setsthe current ter-
minal parameters from term This function is supported by System V.4 and corresponds to
the 4.4BSD call TI OCSETA

TCSETSW

The cal ioctl (fd, TCSETSW struct termos *tern) sets the current termina
parameters fromt er mafter all output characters have been output. This function is supported
by System V.4 and corresponds to the 4.4BSD call Tl QCSETAW

TCSETSF

Thecdl ioctl (fd, TCSETSF, struct termios *tern) fushes the input queue and
sets the current terminal parameters from t er mafter al output characters have been output.
This function is supported by System V.4 and corresponds to the 4.4BSD call TI OCSETAF.

TCGETA

Thecdlioctl (fd, TOETA struct termo *tern) stores current termina parame-
tersinterm Not al t er m os parameters can be stored in astruct term o; you may fi nd
it advantageous to use TOCETS instead (see above).

5 February 2005 02:09

Chapter 15: Terminal Drivers 259

TCSETA

The call ioctl (fd, TCSETA struct termio *tern) sets the current terminal status
fromt er m Parameters that cannot be stored in st ruct t erni o are not affected. This corre-
sponds to TCSETA, except that it usesastruct termo * instead ofastruct termos *.

TCSETAW

Thecallioctl (fd, TCSETAW struct term o *tern) setsthe current terminal param-
eters from t er mafter draining the output queue. This corresponds to TCSETW except that it
usesastruct termo * instead ofastruct termos *.

TCSETAF

The callioctl (fd, TCSETAF, struct termo *tern) input queue” flushes the input
queue and sets the current terminal parameters from t er mafter all output characters have
been output. This corresponds to TCSETF, except that it uses astruct term o * instead of
astruct termos *.

TIOCGWINSZ

The call ioct] (fd, TIOGOGNNSZ, struct w nsize *ws) puts the window size infor-
mation associated with the terminal in ws. The window size structure contains the number of
rows and columns (and pixels if appropiate) of the devices attached to the terminal. It is set
by user software and is the means by which most full screen oriented programs determine the
screen size. The winsize structure is defined as:

struct w nsize

{

unsi gned short ws_row /* rows, in characters */
unsi gned short ws_col; /* colums, in characters */
unsi gned short ws_xpi xel ; /* horizontal size, pixels */
unsi gned short ws_ypi xel ; /* vertical size, pixels */
IS

Many implementations ignore the members ws_xpi xel and ws_ypi xel and set them to 0.

TIOCSWINSZ

The callioctl (fd, TIOCSWNSZ, struct w nsize *ws) sets the window size associ-
ated with the terminal to the value at ws. If the new size is different from the old size,a S G
W NCH (window changed) signal is sent to the process group of the terminal. See TI Q0G
W NSZ for more details.

TIOCSETD

The callioctl (fd, TIOCSETD, int *ldisc); changes the line discipline to | di sc.
Not all systems support multiple line disciplines, and both the available line disciplines and
their names depend on the system. Here are some typical ones:

5 February 2005 02:09

260

« OITYD SC. In System V, the “old” (Seventh Edition) tty discipline.
« NETLD SC The Berknet line discipline.

« NITYD SC: In System V, the “new” (termio) tty discipline.

« TABLD SC The Hitachi tablet discipline.

« NTABLD SC. The GTCO tablet discipline.

+ MOUSELD SC. The mouse discipline.

« KBDLD SC: The keyboard line discipline.

« TTYD SC: The termios interactive line discipline.

« TABLD SC The tablet line discipline.

« SLI PD SC: The Serial IP (SLIP) line discipline.

TIOCGETD

The call ioctl (fd, TIGOEID int *Idisc) returns the current line discipline at
[di sc. See the discussion in the section on TI GCSETD above.

Hardware control

TIOCSBRK

The call ioctl (fd, TIOCSBRK, NUL) sets the terminal hardware into break condition.
This function is supported by 4.4BSD.

TIOCCBRK

The call ioctl (fd, TIOOBRK NULL) clears a terminal hardware BREAK condition.
This function is supported by 4.4BSD.

TIOCSDTR

The callioctl (fd, TIQCSDIR NJL) asserts Data Terminal Ready (DTR). This func-
tion is supported by 4.4BSD. See page 239 for details of the DTR signal.

TIOCCDTR

Thecallioctl (fd, TIOODTR NJLL) resets Data Terminal Ready (DTR). This function
is supported by 4.4BSD. See page 239 for details of the DTR signal.

5 February 2005 02:09

Chapter 15: Terminal Drivers 261

TIOCMSET

The cal ioctl (fd, TIOOMSET, int *state) sets modem state. It is supported by
4.4BSD, SunOS and System V.4, but not all terminals support this call. *st at e is a bit map
representing the parameters listed in table Table 15-13:

Table 15—13: TIOCMSET and TIOCMGET state bits

Paraneter | meaning

TI QGOM LE Line Enable

TIGOM DIR | Data Termina Ready
TICOMRTS | Request To Send

TI QGOM ST Secondary Transmit

TI GOM SR Secondary Receive
TIGOM CTS | Clear To Send

TIGOM CAR | Carrier Detect

TIGOM D Carrier Detect (synonym)
TIGOM R\G | Ring Indication

TIGOM R Ring Indication (synonym)
TIQOM DSR | Data Set Ready

TIOCMGET
Thecdlioctl (fd, TIOOMET, int *state) returnsthe current state of the terminal
modem lines. See the description of TI GOVBET for the use of the bit mapped variable st at e.
TIOCMBIS

Thecalioctl (fd, TITGOMBIS, int *state) setsthe modem state in the same manner
as Tl QVBET, but instead of setting the st at e bits unconditionally, each bit is logically ored
with the current state.

TIOCMBIC
Thecdlioctl (fd, TITGOMBIC int *state) clearsthe modem state: each hit set in the
bitmap st at e isreset in the modem state. The other state bits are not affected.

TCSBRK

Thecalioctl (fd, TCSBRK int nobreak) drainsthe output queue and then sends a
break if nobr eak is not set. This function is supported in System V and SunOS. |n contrast
to the 4.4BSD function Tl QCSBRK, TCSBRK resets the break condition automatically.

5 February 2005 02:09

262

TCXONC

Thecdlioctl (fd, TCXONG int type) specifi esfbw control. Itissupportedin System
V and SunOS. Table 15-14 shows the possible values of t ype.

Table 15—14: TCXONC and tcflow type bits

Par anet er ‘ val ue ‘ meaning

TOOOFF 0 suspend output

TOOON 1 restart suspended output
TA GF 2 suspend input

TAO N 3 restart suspended input

Not all drivers support input flow control via TCXCNC.

Queue control

TIOCOUTQ

Thecdlioctl (fd, TIGQOQAUTQ int *num) setsthe current number of characters in the
output queue to *num Thisfunction is supported by BSD and SunOS.

TIOCSTI

Thecalioctl (fd, TIQCSTlI, char *cp) simulates typed input. It inserts the character
at *cp into the input queue. This function is supported by BSD and SunOS.

TIOCSTOP

The cal ioctl (fd, TIGCSTAP, NJLL) stops output on the terminal. It's like typing
CTRL- S at the keyboard. This function is supported by 4.4BSD.

TIOCSTART

Thecdlioctl (fd, TIQGCSTART, NULL) restarts output on the terminal, like typing CTRL-
Qat the keyboard. Thisfunction is supported by 4.4BSD.

TIOCDRAIN

Thecall ioctl (fd, TIOCCDRAIN NJLL) suspends process execution until all output is
drained. Thisfunction is supported by 4.4BSD.

5 February 2005 02:09

Chapter 15: Terminal Drivers 263

TIOCFLUSH

Thecalioctl (fd, TIOOFLUSH int *what) fushesthe input and output queues. This
function is supported by 4.4BSD, System V.3 and the Seventh Edition. The System V.3 and
Seventh Edition implementations ignore the parameter what and flush both queues. 4.4BSD
fushes the queues if the corresponding bits FREAD and PAR TE are set in *what . If no bits
are set, it clears both queues.

TCFLSH

Thecdlioctl (fd, TGLSH int type) fushes the input or output queues, depending
on the flags defi ned in Table 15-15.

Table 15—15: TCFLSH type bits

Par anet er ‘ val ue ‘ meaning

I
T4 FLUSH 0 fush theinput queue
TOOFLUSH 1 flush the output queue
TA GFLUSH 2 flush both queues

Thisfunction is supported by System V. It does the same thing as TI QOFLUSH, but the seman-
tics are different.

Session control
TIOCGPGRP

Thecdlioctl (fd, TIOOEPAP, pidt *tpgrp) sets*tpgrp to the ID of the current
process group with which the terminal is associated. 4.4BSD uses this call to implement the
functiont cget pgr p.

TIOCSPGRP

The cdl ioctl (fd, TIOQCSPAP, pidt *tpgrp) associates the terminal with the
process group t pgr p. 4.4BSD uses this call to implement the functiont cset pgr p.

TIOCSCTTY

Tl QCSCTTY makes the terminal the controlling terminal for the process. This function is sup-
ported by BSD and SunOS systems. On BSD systems, the call isi octl (fd, TI QCSCITY,
NULL) and on SunOS systemsiitisi octl (fd, TIGCSCITY, int type). Normaly the
controlling terminal will be set only if no other process already ownsit. In those implementa-
tions that support t ype the superuser can set t ype to 1 in order to force the takeover of the
terminal, even if another process ownsit. In 4.4BSD, you would fi rst use the revoke system
call (see Chapter 14, File systems, page 213) to force a close of all fi le descriptors associated
with thefi le.

5 February 2005 02:09

264

System V and older versions of BSD have no equivalent of this function. In these systems,
when a process group leader without a controlling terminal opens a terminal, it automatically
becomes the controlling terminal. There are methods to ovverride this behaviour: in System
V, you set the flag O NOCTTY when you open ther terminal. In old BSD versions, you subse-
quently release the control of the terminal with the Tl GONOTTY request, which we'll ook at in
the next section.

TIOCNOTTY

Traditionaly, the first time a process without a controlling terminal opened a terminal, it
acquired that terminal asits controlling terminal. We saw in the section on TI QCSCTTY above
that thisis no longer the default behaviour in BSD, and that you can override it in System V.
Older BSD versions, including SunOS, did not offer either of these choices. Instead, you had
to accept that you acquired a controlling terminal, and then release the controlling terminal
again with ioctl Tl GONOTTY. If you fi nd this code in a package, and your system doesn’t sup-
port it, you can eliminate it. If your system isbased on System V, you should check the call to
open for the terminal and ensure that the feg O NOCTTY is set.

A second use for TI GONOTTY was after af or k, when the child might want to relinquish the
controlling terminal. This can aso be done with set si d (see Chapter 12, Kernel dependen-
cies, page 171).

TIOCGSID

Thecdlioctl (fd, TIQOEI D pid.t *pid) storesthe termina’s session ID at pi d.
This function is supported by System V.4.

Miscellaneous functions

TIOCEXCL

The call ioctl (fd, TIOEXA, NULL) sets exclusive use on the terminal. No further
opens are permitted except by root.

TIOCNXCL

The cal ioctl (fd, TIOONXQL, NUL) clears exclusive use of the terminal (see TI G
CEXQL). Further opens are permitted.

TIOCCONS

Thecdlioctl (fd, TIGQOOONS, int *on) setsthe consolefile. If on pointsto anon-zero
integer, kernel console output is redirected to the terminal specifi ed in the call. If on points to
zero, kernel console output is redirected to the standard console. Thisis usually used on work
stations to redirect kernel messages to a particular window.

5 February 2005 02:09

Chapter 15: Terminal Drivers 265

TIOCGSOFTCAR

Thecalioctl (fd, TIOOGSCFTCAR int *set) sets*set tol1if theterminal “Data car-
rier detect” (DCD) signal or the software carrier flbg is asserted, and to O otherwise. This
function is supported only in SUNOS 4.X, and is no longer present in Solaris 2. See page 239
for adescription of the DSR line.

TIOCSSOFTCAR

Thecdl ioctl (fd, TIOCSSOFTCAR int *set) isa method to fake a modem carrier
detect signal. It resets software carrier mode if *set is zero and setsit otherwise. In software
carrier mode, the Tl QOGSCFTCAR call always returns 1; otherwise it returns the real value of
the DCD interface signal. This function is supported only in SunOS 4.X, and is no longer
present in Solaris 2.

termios functions

It should come as no surprise that people have long wanted a less bewildering interface to ter-
minals than thei oct| calls that we looked at in the previous section. In POSIX.1, a number
of new functions were introduced with the intent of bringing some sort of order into the chaos.
A total of 8 new functions were introduced, split into three groups. In addition, a further 6
auxiliary functions were added:

e tcgetattr andtcsetattr getand set termina attributesusingstruct ternios.
e tcgetpgrpandtcset pgrp get and set the program group ID.
e tcdrain,tcflowtcflushandtcsendbr eak manipulate the terminal hardware.

- cfgetispeed, cfseti speed, cf get ospeed, cf set ospeed, cf set speed and cf mak-
er aware auxiliary functions to manipulatet er m os entries.

These functions do not add new functionality, but attempt to provide a more uniform inter-
face. In some systems, they are system calls, whereas in others they are library functions that
build on thei oct| interface. If you are porting a package that usest er ni os, and your sys-
tem doesn’t supply it, you have the choice of rewriting the code to usei oct | calls, or you can
use the 4.4BSD library «cals supplied in the 44BSD Lite distribution
(usr/src/lib/libc/gen/termios.c). In the following sections we' Il 1ook briefly at each function.

Direct termios functions

tcgetattr

tcgetattr corresponds to TI QOGETA described on page 256. It returns the current t er m os
statetot erm

#incl ude <termos. h>
int tcgetattr (int fd, struct ternos *tern

266

tcsetattr
tcgetattr setsthecurrentt er m os statefromterm

#i ncl ude <termos. h>
int tcsetattr (int fd, int action, struct termos *t)

act i on can have one of the values listed in Table 15-16.

Table 15—16: tcsetattr action flags

Paraneter | meaning

TCSANONV Change terminal parameters immediately. Corresponds to thei oct| request
TI QCSETA.

TCSADRAIN | First drain output, then change the parameters. Used when changing parame-
tersthat affect output. Correspondsto thei oct| call TI QCSETAW
TCSAFLWSH | Discard any pending input, drain output, then change the parameters. Corre-
spondstoi oct| call TI GCSETAF.

See page 257 for details of the corresponding i oct | interfaces.

In addition, some implementations defi ne the parameter TCSASCFT: if thisis specifi ed in addi-
tion to one of the above flags, the values of thefi eldsc_cfl ag, c_i speed and c_ospeed are
ignored. Thisistypically used when the device in question is not a serial line terminal.

tcgetpgrp

t cget por p returns the ID of the current process group with which the terminal is associated.
It correspondsto thei oct | call TI GOEPARP described on page 263.

#i ncl ude <sys/types. h>

#i ncl ude <uni std. h>

pidt tcgetpgrp (int fd);
tcsetpgrp

t cset pgr p associates the terminal with the process group t pgrp. It corresponds to the
i oct| call TI OCSPARP described on page 263.

#i ncl ude <sys/types. h>

#i ncl ude <uni std. h>

int tcsetpgrp (int fd, pid_t pgrp_id);
tcdrain

t cdrai n suspends the process until al output is drained. It corresponds to the i oct! call
Tl OCDRAI N described on page 262.

5 February 2005 02:09

5 February 2005 02:09

Chapter 15: Terminal Drivers 267

#i ncl ude <term os. h>
int tcdrain (int fd);
tcflow

t cf | owspecifies flow control. It corresponds to the i oct| call TCXONC. See the description
of TCXONC on page 262 for the meaning of the parameter act i on.

#incl ude <termos. h>
int tcflow (int fd, int action);

tcflush
t cf | ush flushes input or output queues for f d.

ncl ude <tern os. h>
int tcflush (int fd, int action);

act i on may take the values shown in Table 15-17.

Table 15—17: t cf | ush action bits

Paraneter | meaning

TA FLUSH Flush data received but not read

TOOFLUSH Flush data written but not transmitted

TA GFLUSH | Flush both data received but not read and data written but not transmitted

This function corresponds to the i oct | request TGFLSH described on page 263.

tcsendbreak

t csendbr eak sends a break indication on the line. This is equivalent to the i oct| request
TCSBRK described on page 261.

ncl ude <tern os. h>
int tcsendbreak (int fd, int len);

termios auxiliary functions

In addition to the t er m os functions in the previous section, a number of library functions
manipulate t er m os struct entries. With one exception, they handle line speeds. They don’t
have any direct effect on the line—you need atcsetattr for that—but they provide a link
between the viewpoint of the application and the underlying implementation.

There is still no agreement on how to represent line speeds. BSD systems use the bit rate as
an integer and store it in the fields c_i speed and c_ospeed. They leave it to the driver to
explain it to the hardware, so you can effectively specify any speed the hardware is capable of
handling. By contrast, System V still uses the small numeric indices that were used in the

268

Seventh Edition” (see page 240), which allows the fi eld to be stored in 4 bits. They are
located in the fi eld c_cfl ag. Thisis not a good idea, because these speeds are the only ones
System V knows about. If you have aV.32bis, V.42bis modem that claims to be able to trans-

fer data at up to 57,600 bps, you will not be able to take full advantage of its capabilities with

System V. |n addition, there is only one speed constant, which sets both the input and output

speeds. The functions for setting input and output speed are effectively the same thing.

In addition to these problems, SCO UNIX System V.3 further complicates the issue by provid-

ing the fields s ospeed and s ispeed in the struct termos. The functions
cf seti speed and cf set ospeed set these fi elds in addition to the four bitsinc_cfl ag, but
the functions cf get i speed and cf get ospeed retrieve the values from c¢_cf | ags, so it's not

clear what use thefi eldsc_i speed and ¢c_ospeed are intended to be.

Setting the bit rates is thus not quite as simple as it might appear: the preprocessor variables
B9600 and friends might not equate to the kind of constant that the termios implementation

needs, and there is no designated place in thet er m os structure to store the hit rates.

This problem is solved by the following functions, which are normally macros:

e speed t cfgetispeed (struct termos *t) returnst’sinput speed in speed._t
format. 1t isundefi ned if the speed is not representable asspeed_t .

e int cfsetispeed (struct ternmos *t, speed t speed)setst’sinput speed to
the internal representation of speed.

e speed t cfgetospeed (struct termos *t) returnst’soutput speed in speed._t
format. Theresult is undefi ned if the speed is not representable asspeed_t .

e int cfsetospeed (struct termos *t, speed_t speed) setst’s output speed
to theinternal representation of speed.

e void cfsetspeed (struct termos *t, speed_t speed) sets both input and
output speed to theinternal representation of speed.

 void cfrmakeraw (struct termos *t) setsthewhole structuret to default values.

* These constants were originally the values that were written to the interface hardware to set the speed.

5 February 2005 02:09

